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Abstract
Attentional bias to threat, the process of preferentially attending to potentially threatening environmental stimuli over neu-
tral stimuli, is positively associated with behavioral inhibition (BI) and trait anxiety. However, the most used measure of 
attentional bias to threat, the dot-probe task, has been criticized for demonstrating poor reliability. The present study aimed 
to assess whether utilizing a sequential sampling model to describe performance could detect adequate test–retest reliability 
for the dot-probe task, demonstrate stronger cueing effects, and improve the association with neural signals of early attention. 
One hundred and twenty children aged 9–12 years completed the dot-probe task twice. During the second administration, 
event-related potentials (ERPs) were obtained as time-sensitive neural markers of attention. BI was not associated with tra-
ditional or diffusion model measures of performance. Traditional and diffusion model measures of performance were also 
not associated with N1, P2, or N2 ERP amplitude. There were main effects of Visit, in which RTs were faster and standard 
deviation of RT smaller during the second administration due to an increase in drift rate and a decrease in non-decision 
time. The traditional RT bias score (r = 0.06) and bias scores formed via diffusion model parameters (all r’s < 0.40) all dem-
onstrated poor reliability. Results confirm recommendations to move away from using the dot-probe task as the primary or 
sole index of attentional bias.

Introduction

Behavioral Inhibition (BI) is an early temperamental trait 
marked by wariness and avoidance of novel stimuli, and has 
been associated with an increased risk for anxiety disorders 
in later life (Blackford & Pine, 2012; Coll et al., 1984). BI 
is commonly measured via parent report of temperament 
(Chronis-Tuscano et al., 2009; Hudson et al., 2011) or lab-
based behavioral measures of approach (e.g. a play-based 
session with parent and experimenter (Schwartz et al., 1999) 
which are both generally well correlated (Bishop et al., 
2003).

Attentional bias to threat is one possible mechanism 
that explains BI stability over the lifespan, as well as BI’s 

association with anxiety disorders. Attentional bias to threat 
refers to a phenomenon in which preferential attention is 
given to a potentially threatening stimulus over other, less 
threatening, environmental cues (Morales et al., 2017). It is 
believed to be an evolutionary adaptation to a world full of 
stimuli representing varying levels of danger. However, if a 
bias is applied across stimuli and contexts without regard to 
reasonable or objective threat levels, it may limit the child’s 
ability to explore the environment, thereby leading to the 
subjective conclusion that the world is threatening.

In the lab, threat bias is most commonly assessed in chil-
dren via the dot-probe task, a computerized paradigm in 
which two faces—one angry and one neutral—appear on 
the screen for a brief period (Ehrenreich & Gross, 2002). 
After the faces offset, an arrow briefly appears where one of 
the two faces had previously been displayed, and the child 
is asked to indicate the direction the arrow is pointing. If a 
child is selectively attending to threat, they will then be con-
sistently faster to respond to arrows that appear behind the 
angry face (i.e., threat congruent condition) than to arrows 
behind the neutral face (i.e., threat incongruent condition). 
Threat bias is traditionally operationalized by a difference 
score calculated by subtracting a participant’s mean reaction 
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time (RT) on congruent trials from their mean RT on incon-
gruent trials. The larger (and more positive) the difference 
score, the more the participant is biased toward the threat. 
Using the dot-probe task, an impressive body of research 
has documented that clinically anxious and/or behaviorally 
inhibited (BI) children, adolescents, and adults selectively 
attend to angry versus neutral faces on a dot-probe task (Bar-
Haim et al., 2007). Children who are behaviorally inhibited 
as toddlers are more likely to feel anxious and to be socially 
withdrawn later in childhood if they also demonstrated threat 
bias on a dot-probe task (Pérez-Edgar et al., 2011).

To better understand the biological correlates of this 
attentional bias, several event-related potentials (ERPs) of 
the EEG signal have been of particular interest. The P1 and 
N1 reflect activity in the occipital and parietal lobes, and are 
known to be sensitive to early visual spatial as well as face 
processing (Eimer & Holmes, 2007; Mueller et al., 2009; 
Rossignol et al., 2013; Taylor, 2002). The P2 reflects activity 
in the frontal and parietal lobes, is central to the processing 
of emotionally valanced stimuli, and its amplitude has been 
found to be higher for angry faces in anxious individuals 
(Bar-Haim et al., 2005; Carretié et al., 2001; Eldar et al., 
2010; Kanske & Kotz, 2007; Kanske et al., 2011). The N2, 
last of the early appearing waveforms, reflects activity in 
the frontal and parietal lobes, and its amplitude is positively 
associated with anxiety in adults and children (Henderson, 
2010; Lamm et al., 2014). In children, the N2 moderates 
the relation between threat bias and BI (Thai et al., 2016).

However, recent studies have had difficulty replicating the 
BI/dot-probe performance link (Morales et al., 2017; Pérez-
Edgar et al., 2011; Thai et al., 2016), and there is accru-
ing evidence that the split-half and test–retest reliability of 
reaction-time dependent performance of the dot-probe task 
is quite poor (Kappenman et al., 2014; Molloy & Ander-
son, 2020; Rodebaugh et al., 2016; Waechter & Stolz, 2015; 
Waechter et al., 2014). One possible reason for this weak-
ness is that solely relying on mean RT to index performance 
excludes task accuracy and ignores the shape of the RT dis-
tribution. This, therefore, provides an incomplete description 
of performance that may result in misleading interpretations. 
RT distributions and accuracy are also together influenced 
by multiple interactive processes, including how cautious 
one tends to be in responding, the time it takes to prepare 
or execute a motor response, the time it takes to encode the 
stimulus, as well as whether one is predisposed to respond 
in a particular manner (Ratcliff & Tuerlinckx, 2002). The 
broader anxiety and BI literature has, in fact, suggested that 
performance profiles may be explained by cautious response 
strategies and idiosyncratic response patterns (Bar-Haim 
et al., 2007). However, the traditional single RT difference 
score is unable to provide this level of distinction. A measure 
of task performance that incorporates both RT and accu-
racy for all trials is necessary to provide a more complete 

description of task performance and to potentially explain 
the cognitive processes that produce the phenomenon.

The diffusion model (DM) is a sequential sampling model 
of perceptual decision making that combines both RT and 
accuracy into a single set of performance indices. It thereby 
provides a more comprehensive and nuanced approach to 
documenting performance on two-alternative forced-choice 
tasks like the dot-probe (Ratcliff & Tuerlinckx, 2002). The 
DM assumes that RTs are determined by several interac-
tive factors during a forced-choice decision. First, the time 
needed to encode a stimulus and for the motor response to 
be prepared/executed is referred to as non-decision time (and 
represented in the parameter, Ter). Second, the speed with 
which information is accumulated towards a decision (e.g., is 
the arrow pointing right or left?) is represented as drift rate 
(v). Third, the amount of information a participant requires 
before coming to an answer (that is, how sure they need to 
be) is referred to as boundary separation (a). Lastly, response 
bias, or the predisposition towards a particular response, is 
represented as z. It is the start point of the decision process 
and represents the response expectancy bias, or how much 
evidence needs to be sampled or accumulated for any given 
decision. Within the diffusion model, bias is commonly 
identified in one of two ways. In the first, bias is identified if 
the relative start point (za, in which z is divided by a: Voss 
et al., 2013) is not equidistant, but is closer to one of the two 
boundaries. It can be understood as a response expectancy 
bias (Leite & Ratcliff, 2011; Mulder et al., 2012; White & 
Poldrack, 2014). A second way that bias is commonly iden-
tified is if the drift rate to one decisional boundary is faster 
than the drift rate towards the other (Leite & Ratcliff, 2011; 
Mulder et al., 2012; White & Poldrack, 2014). In this latter 
case, bias occurs because the quality of evidence, or the rate 
at which evidence accumulates, for one stimulus is faster 
than for another stimulus.

Diffusion models are increasingly being used to study 
threat bias in anxious adults. In one study, participants were 
shown a string of letters and asked to indicate whether the 
string constituted a real word (White et al., 2010). Some of 
the real words represented threat (e.g., “cancer,” “embarrass-
ment”) and others were neutral (e.g., “planet,” “avocado”). 
RT and accuracy analyses did not discriminate between anx-
ious and non-anxious participants, but v was consistently 
faster in response to threatening words versus neutral words 
among anxious participants. In another study, participants 
were asked to decide if a presented word was threatening or 
neutral (White et al., 2016). Traditional measures of RT indi-
cated that anxious participants responded faster to threaten-
ing words than non-anxious participants did. DM parameters 
broke this result down further and demonstrated that faster 
response times were due to both a stronger expectancy bias 
(za) that a word would be threatening and a faster drift rate 
to threatening compared to non-threatening words.



833Psychological Research (2022) 86:831–843	

1 3

In these tasks, the explicit decision (threat or non-threat?) 
allows bias to be measured directly and facilitates data inter-
pretation, including the interpretations associated with DM 
parameters. In the dot-probe task, however, bias is measured 
indirectly: the face serves as the cue, but the actual decision 
is whether the arrow points left or right. The design of the 
dot-probe, therefore, places the measurement of potential 
processing bias at a one-step remove, complicating the inter-
pretation of performance data. However, a very similar and 
commonly studied cognitive phenomenon in which the dif-
fusion model has been applied, contextual cueing, provides 
some guidance.

In contextual cueing tasks, participants are asked to indi-
cate whether the target, the letter “T” placed among a set of 
distractor letter “L”s, is rotated to the left or right. Response 
time benefits are observed for stimuli in which the position 
of distractors relative to targets is repeated (Chun & Jiang, 
1998, 1999). Three causes of the contextual cueing effect 
have been identified. In the first, the memory of repeated 
displays efficiently guides attention during the search pro-
cess to the target location. Because the onset of the deci-
sion (i.e., left or right?) is dependent upon the length of the 
search time, in the contextual cueing task, the cueing effect 
of repeated displays is implemented in the diffusion model 
through the non-decision time parameter Ter (Sewell et al., 
2018). In analogy to the dot-probe, if the cue is effective, 
one way that attentional bias might be reflected is by shorter 
Ter to angry vs. neutral faces. The argument for Ter to be a 
measure of attentional bias has also previously been made 
for a study of anxious adults (Price et al., 2019).

Once attention is focused, two other processes come into 
play to produce the reduced RT observed in cueing effects. 
Recognition of the context within which the target is embed-
ded (i.e., the angry face) allows individuals to reduce the 
amount of information needed to confirm that the target has 
been identified and attention correctly directed (Kunar & 
Wolfe, 2011; Kunar et al., 2007; Schankin & Schubo, 2009, 
2010; Zhao et al., 2012). In the diffusion model, this process 
is implemented as decreases in boundary separation (Sewell 
et al., 2018; Weigard & Huang-Pollock, 2014).1 Therefore, 
attentional bias among behaviorally inhibited children would 
be observed as shorter Ter and smaller boundary separation 
in a dot-probe task.

DM parameters have also demonstrated satisfactory 
test–retest reliabilities in lexical decision and recognition 
memory tasks (Lerche & Voss, 2017). Although test–retest 

reliability of a difference score of the Ter parameter from 
a dot-probe task using threat versus non-threat words 
in a sample of clinically anxious adults produced a low 
test–retest reliability of ICC = 0.25, it was still better than 
that for the traditional bias scored based on RTs where 
ICC = 0.001 (Price et al., 2019). It is not known whether a 
similar improvement would be found for children. There-
fore, building on this newer body of work demonstrating the 
potential utility of the DM to better understand the cognitive 
mechanisms supporting attentional bias to threat, and the 
potential to improve the reliability of performance indices, 
the present study aims to determine if DM can improve the 
known shortcomings of the dot-probe task in a sample of 
behaviorally inhibited (BI) children.

Hypothesis 1  If the diffusion model provides a more accu-
rate index of performance, then a significant main effect of 
Group (BI vs. non-BI) would be observed in which children 
who are behaviorally inhibited would have faster Ter and 
smaller boundary separations in the dot-probe task. They 
would also be more likely to demonstrate larger attentional 
bias difference scores when calculated via diffusion model 
parameters as opposed to traditional RT difference scores.

Hypothesis 2  Similarly, if the diffusion model parameters 
more accurately describe behavioral performance on the 
dot-probe task, those parameters will be more strongly cor-
related with the amplitude of recorded ERPs known to be 
associated with early attentional processes (N1, P1) and 
emotional processing (N2, P2) than performance indexed 
by RT and Accuracy.

Hypothesis 3  If DM parameters are more consistent meas-
ures of performance on the dot-probe task, they are expected 
to produce better test–retest reliability than standard indices 
of performance.

Materials and methods

Participants

A total of 120 children ages 9–12 years old (M = 10.82 
SD = 1.01) were recruited via the FIRSt Families database, 
a database of families who are interested in participating in 
Pennsylvania State University research, through community 
outreach, and through word of mouth in central Pennsyl-
vania. Children were recruited as part of a larger study on 
the relations between attention and anxiety in behaviorally 
inhibited school-aged children (Thai et al., 2016) and reflect 
the ethnic and racial makeup of the region. The ethnicity of 
the sample was 68.6% White, 3.3% Asian/Pacific Islander, 

1  The information used to judge the orientation of the target is also 
influenced by learned factors that are independent of the perceptual 
qualities of the target itself (e.g. including learning to suppress dis-
tractors, see Sewell et al. (2018)). This latter process, however, is less 
likely to be observed in a task like the dot-probe, where explicit dis-
tractors are not present.
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2.5% Hispanic, 0.8% African American, 2.5% mixed race, 
and 22.3% unreported.

Potential participants were screened for the study using 
the Behavioral Inhibition Questionnaire (BIQ), a parent-
report 30-item questionnaire of their child’s response to 
social or situational novelty based on a 1–7 point Likert 
scale (Bishop et al., 2003). The sum of all items produces an 
overall BI score, in addition to subscale scores for sensitiv-
ity to social novelty and situational novelty. Based on pub-
lished cut-offs, children scoring ≥ 119 on the BIQ total score 
or ≥ 59 on the Social Novelty subscale were identified as 
being behaviorally inhibited. This resulted in an n = 43 who 
were considered behaviorally inhibited [BI; 53% girls, aver-
age age = 10.71 (0.99) years, average IQ = 113.44 (12.53), 
average BIQ = 126.59 (19.04)]. Children scoring below each 
of these markers were identified as behaviorally non-inhib-
ited (BN, n = 77; 53% girls, average age = 10.89 (1.02) years, 
average IQ = 110.70 (14.28), average BIQ = 73.62 (20.08). 
There were no group differences in age, IQ, or sex distribu-
tion (all p’s > 0.30).

A post hoc power analysis was conducted in GPOWER 
(Faul et al., 2007) assuming α = 0.05, N = 120, and f = 0.25 
for main effects and interactions. With these assumptions, 
power was 0.88, 0.99, and 0.99 to detect the main effect of 
BI, Visit, and the BI x Visit interactions, respectively. Power 
was 0.80 to detect an f = 0.22 for BI, and an f = 0.13 for the 
main effect of Visit and the BI × Visit interaction.

Procedures

Once screened into the study, children and their parents 
attended two separate visits spaced approximately one week 
apart (average = 9.35 days). During the first visit, trained 
research staff administered the Computerized Diagnostic 
Interview Schedule for Children Version IV (C-DISC IV) to 
parents. During both visits, children completed a dot-probe 
task presented with the E-Prime software package version 
2.0. Electroencephalogram (EEG) recordings were obtained 
during the second administration only.

Dot-Probe Task During the first visit, children were 
seated in a comfortable chair facing a computer monitor. 
When the task started, they saw a fixation cross for 500 ms. 
This was followed by a pair of faces—one on top and one 
on bottom—for 500 ms. A left or right-facing arrow then 
appeared in place of one of the faces. Participants were given 
1500 ms to indicate the direction of the arrow by a finger 
press.

During the second visit, EEG data were collected dur-
ing task performance. To allow enough time for ERPs to 

be recorded, the stimulus presentation time was length-
ened to 1000 ms and the response interval was lengthened 
to 2000 ms. These timing changes may represent an impor-
tant difference in paradigm construction between the first 
and second administrations, which we address with respect 
to reliability estimates in “Discussion”.

In the Neutral–Neutral (NN) condition, both faces had 
neutral expressions. In the other two conditions, one face 
was angry while the other was neutral. In the Neutral-
Threat Congruent (NTc) condition, the target appeared 
in the angry face’s location. In the Neutral-Threat Incon-
gruent (NTi) condition, the target appeared in the neutral 
face’s location. After the response window elapsed, the 
next trial began. Participants were administered 180 tri-
als, split across three blocks of 60 trials each, with trials 
of each condition split evenly among blocks.

Equipment

EEG data were collected continuously using a 128-channel 
geodesic sensor net (Electrical Geodesics Inc., Eugene, 
Oregon). Vertical eye movements were monitored by elec-
trodes 1 cm above and below each eye, while horizontal 
eye movements were monitored by electrodes 1 cm to the 
outside of each eye. All impedances were kept below 50 
kΩ. Electrodes were referenced to Cz during collection 
and re-referenced to the average of the left and right mas-
toid during pre-processing.

ERPs were recorded at a 1000 Hz sampling rate start-
ing at 100 ms before stimulus onset through 500 ms after 
stimulus onset, to allow for a 100 ms baseline correction. 
Brain Vision Analyzer (Brain Products GmbH, Germany) 
was used to pre-process and process the data. A high-pass 
frequency of 0.1 Hz and a low pass frequency of 40 Hz 
were used to filter the data. Eye movement artefacts were 
removed using the Gratton method (Gratton et al., 1983). 
ERPs in response to face prompts were calculated as in 
Thai et al. (2016) by mean amplitude of either occipital 
electrodes (65, 66, 69, 70, 71, 74, 76, 82, 83, 84, 89, 90) 
or fronto-central electrodes (3, 4, 5, 9, 10, 11, 12, 16, 18, 
19, 20, 22, 23, 24, 27, 28, 33, 117, 118, 122, 123, 124). 
ERPs were calculated as the mean amplitude across the 
ERP window, which was 50 ms before and after the peak. 
Specifically, occipital ERPs included the P1 (40–140 ms) 
and N170 (120–220 ms). Fronto-central ERPs included the 
N1 (60–140 ms), P2 (140-240 ms), and N2 (260–360 ms). 
Figure 1 provides Grand Average waveforms.
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Data preparation

Attentional Bias to Threat To form the standard RT bias 
score, data were processed following Perez-Edgar et al. 
(2011). Error trials were first removed, as were responses 
faster than 150 ms or 2 SDs above or below the partici-
pant’s mean RT.2 This resulted in the removal of 14.9% 
of trials, or an average of 26.98 trials per participant. 
Mean RT for correct responses on congruent trials were 
subtracted from mean reaction time to correct responses 
on incongruent trials to form the RT Threat bias (i.e. 
NTi–NTc). Positive values, therefore, indicate an atten-
tional bias to threat.

Diffusion model parameters Anticipatory responses faster 
than 300 ms were excluded from analysis per convention 
(Ratcliff & Tuerlinckx, 2002). No other exclusions were set. 
This resulted in the exclusion of only 4.6% of trials, or an 
average of 8.33 per participant; the ability to retain more 
data to provide a more accurate description of the perfor-
mance is one of the many benefits of the DM. Diffusion 
model parameters were calculated for each participant using 
the FastDM software (Voss et al., 2013). Data were com-
puted using the Kolmogorov–Smirnov (ks) optimization 
criteria, which is the recommended process when the total 
number of trials ranges from 100 to 400 (Voss et al., 2013). 
Drift (v), relative starting point (za), non-decision time (Ter) 
and boundary separation (a) were estimated separately for 
each of the three task conditions (i.e. Neutral, Threat Incon-
gruent, Threat Congruent), and for overall task performance 
collapsed across cue conditions. Upper and lower boundaries 
for the model were coded as correct/incorrect.

Several methods were utilized to assess for model fit. 
First, KS-tests were conducted on each participant for each 
task condition. Means and standard deviations are shared 
in Table 1.

A simulation-recovery study was also conducted using 
the “rdiffusion()” function from the R package “rtdists”. 
This generates simulated response time data based on the 
diffusion parameters derived from the empirical response 
times, which is then fit to the empirical response times. Cor-
relations between the simulated and empirical incongruent 
and congruent values at both Visit 1 and Visit 2 for v, a, and 
ter were all above 0.75 with an average of 0.88, indicating 
the parameters fit well. Za was below 0.5 at each data point, 
indicating poor fit, which we further discuss in “Results”.

In addition, cumulative distribution function (CDF) plots 
were formulated based on the empirical and simulated data-
sets. Visual inspection of this graphical visualization of the 
data confirmed adequate fit for each task condition. See 
Fig. 2 for CDF plots.3

For interested readers, Supplemental Table 1 provides a 
correlation table of traditional RT and accuracy measures 
with DM parameters.

To evaluate whether results varied by optimization cri-
terion, DM parameters were also computed using Maxi-
mum Likelihood (ML) and Chi-Square (CS) methods, but 
this did not significantly alter the pattern or interpretation 

Fig. 1   Grand Average ERPs of interest. The left panel provides grand 
averages of fronto-central electrodes (3, 4, 5, 9, 10, 11, 12, 16, 18, 19, 
20, 22, 23, 24, 27, 28, 33, 117, 118, 122, 123, 124). The right panel 

provides grand averages of occipital electrodes (65, 66, 69, 70, 71, 
74, 76, 82, 83, 84, 89, 90)

2  Results did not change when a cutoff of < 300  ms was applied to 
better approximate cutoffs used for diffusion modeling.

3  Because the CDF plots suggested the presence of some misfits, 
1000 datasets were subsequently simulated. Participants who exhib-
ited a lower model fit (defined as < 10% quantile of the distribution 
of p values) for any of the four conditions were removed from analy-
sis. This resulted in a reduced N = 57 (22 BI, 34 Controls). CDF plots 
generated from the remaining participants demonstrated improved 
model fit, but primary results did not change. See Supplementary 
Table 2 and Supplementary Fig. 1.
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of results, so results based on KS optimization procedures 
are reported here.

To form the attentional bias score for DM parameters, 
difference scores for each parameter were calculated by 
subtracting their value on congruent trials from their value 
on incongruent trials (i.e. NTi–NTc) to form the following 
variables: vDiff, aDiff, zaDiff, TerDiff. Because larger drift 
rates indicate faster drift, unlike RT difference scores, a 
negative vDiff score would indicate a greater bias to threat. 
For all other difference scores, a larger positive score indi-
cates bias to threat.

Results

Attentional Bias to Threat See Table 2 for a summary of 
results. A mixed within (Visit: first, second) and between 
(BI: BI, non-BI) subjects ANOVA found no significant 
main effect of BI on attentional bias to threat as calculated 
by the traditional RT difference score [NTi–NTc, F(1, 
118) = 0.85, p = 0.36, η2 = 0.01], or as calculated by any 
difference scores formed from the DM parameters (vDiff, 
aDiff, zaDiff, and terDiff; all p > 0.27, all η2 < 0.01). 
There was also no main effect of Visit on attentional bias 

Table 1   Means and SDs of performance, and Pearson’s (r) between Congruent (NTc) and Incongruent (NTi) cues

MRT mean reaction time, SDRT standard deviation of reaction time, Acc accuracy, a boundary separation, v drift rate, za start point, Ter non-deci-
sion time, BI behaviorally inhibited, BN behaviorally non-inhibited, NN neutral–neutral cue, NTc neutral-threat congruent cue, NTi neutral-threat 
incongruent cue
*p < 0.05
**p < 0.01

Visit 1 Visit 2

NN NTc NTi r
(NTc:Ti)

NN NTc NTi r
(NTc:Ti)

MRT
 BI 612.67 (80.79) 611.75 (78.07) 609.35 (73.61) 0.96** 541.18 (81.54) 537.24 (79.93) 539.26 (82.57) 0.94**
 BN 632.01 (82.06) 631.81 (80.26) 633.15 (75.80) 0.91** 546.30 (78.39) 543.50 (80.08) 546.69 (85.32) 0.95**
 Total 626.03 (81.97) 625.61 (79.95) 625.80 (75.90) 0.92** 544.48 (79.22) 541.28 (79.75) 544.05 (84.08) 0.95**

SDRT
 BI 140.40 (38.41) 141.84 (37.66) 139.20 (29.66) 0.78** 128.27 (47.60) 125.95 (43.04) 132.90 (53.53) 0.64**
 BN 144.66 (33.16) 142.28 (34.87) 144.99 (30.85) 0.76** 127.91 (46.93) 128.98 (52.16) 130.44 (53.84) 0.74**
 Total 143.34 (34.83) 142.14 (35.68) 143.20 (30.54) 0.77** 128.04 (46.97) 127.91 (48.95) 131.31 (53.52) 0.70**

Acc
 BI 0.91 (0.16) 0.91 (0.15) 0.90 (0.15) 0.98** 0.93 (0.06) 0.92 (0.08) 0.93 (0.06) 0.71**
 BN 0.91 (0.11) 0.91 (0.14) 0.91 (0.11) 0.94** 0.92 (0.07) 0.92 (0.07) 0.92 (0.07) 0.73**
 Total 0.91 (0.13) 0.91 (0.14) 0.91 (0.13) 0.96** 0.93 (0.07) 0.92 (0.07) 0.93 (0.06) 0.72**

A
 BI 1.25 (0.26) 1.23 (0.23) 1.24 (0.23) 0.67** 1.16 (0.31) 1.13 (0.29) 1.18 (0.31) 0.64**
 BN 1.22 (0.18) 1.21 (0.18) 1.23 (0.18) 0.61** 1.09 (0.22) 1.1 (0.24) 1.12 (0.26) 0.64**
 Total 1.23 (0.2) 1.22 (0.19) 1.23 (0.2) 0.64** 1.12 (0.26) 1.11 (0.26) 1.14 (0.28) 0.64

V
 BI 2.83 (1.14) 2.86 (1.2) 2.74 (1.10) 0.89** 3.21 (0.73) 3.11 (0.77) 3.25 (0.8) 0.54**
 BN 2.82 (0.91) 2.85 (0.93) 2.82 (0.98) 0.78** 3.16 (0.83) 3.18 (0.81) 3.01 (0.81) 0.62**
 Total 2.82 (0.99) 2.85 (1.01) 2.8 (1.02) 0.82** 3.18 (0.8) 3.16 (0.79) 3.09 (0.82) 0.58**

Za
 BI 0.40 (0.08) 0.40 (0.08) 0.41 (0.07) 0.43** 0.41 (0.11) 0.42 (0.09) 0.4 (0.1) 0.11
 BN 0.38 (0.07) 0.39 (0.08) 0.39 (0.08) 0.10 0.4 (0.08) 0.39 (0.08) 0.43 (0.09) 0.23*
 Total 0.39 (0.07) 0.39 (0.08) 0.39 (0.08) 0.21** 0.41 (0.09) 0.4 (0.09) 0.42 (0.1) 0.15

Ter
 BI 0.39 (0.06) 0.39 (0.05) 0.39 (0.06) 0.78* 0.36 (0.04) 0.36 (0.04) 0.35 (0.04) 0.71*
 BN 0.4 (0.05) 0.41 (0.05) 0.41 (0.06) 0.83** 0.36 (0.04) 0.36 (0.04) 0.36 (0.04) 0.77**
 Total 0.39 (0.08) 0.39 (0.08) 0.4 (0.08) 0.83** 0.37 (0.05) 0.36 (0.05) 0.36 (0.05) 0.75**
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to threat regardless of how it was calculated (all p > 0.11, 
all η2 < 0.02).

There was, however, a significant BI × Visit interaction 
on vDiff (p = 0.01, η2 = 0.06) in which the drift difference 
score was larger and positive at the second timepoint among 
those identified as BI (p = 0.04, η2 = 0.10), but there was no 
effect of Visit on controls (p = 0.13, η2 = 0.03). There was 
also BI × Visit interaction on zaDiff (p < 0.01, η2 = 0.08) 
in which control participants showed a significant increase 
of zaDiff in their second visit (p < 0.01, η2 = 0.11), but BI 

participants did not (p = 0.11, η2 = 0.06). We return to these 
different indices of bias in “Discussion”. See Table 2 for a 
list of model results.4

Fig. 2   Cumulative Distrubution Function (CDF) plots of congruent 
(left panels) and Incongruent (right panels) data at both Visits. Blue 
lines represent the distribution of accurate responses, while red lines 

indicate the distribution of inaccurate responses. Continuous lines 
represent observed data, while dashed lines represent simulated data

4  A Cue (3: Neutral, Threat Congruent, Threat Incongruent)  Visit 
(2)  BI (2) GLM replicated these effects. However, this GLM iden-
tified an additional Visit (2)  Cue (3) interaction on Ter (F(2, 
236) = 5.17, p = 0.006, η2 = 0.042) in which the Neutral cue trials did 
not differ between visit 1 and 2 as much as the task condition cue tri-
als did.



838	 Psychological Research (2022) 86:831–843

1 3

ERP analyses Simple regression analyses were conducted 
to separately assess the association between attentional bias 
indices and N1, P1, N170, N2, and P2 (see Table 3). RT 
difference score, aDiff, vDiff, and terDiff did not regress 
significantly onto any ERP (all r’s < 0.154, all p’s > 0.056). 
P1 and N170 were negatively associated with the zaDiff 
(P1: r = − 0.22, p = 0.01; N170: r = − 0.21, p = 0.01). In a 
decision task where the judgement is explicit (i.e. is the 
face a threat or non-threat) such a correlation might suggest 
stronger expectancy biases are associated with lower state 
arousal or reduced selective attention (Luck et al., 2000). 
However, because the attentional bias in the dot-probe task 
is measured indirectly, and because our simulation recovery 
study of the za parameter indicated poor fit, the interpret-
ability or relevance of this particular association is not clear.

Test–retest reliability Correlations of performance 
between the first and second task administrations as indexed 
by DM parameters and by traditional RT parameters were 
calculated. Test re-test reliability of difference scores are 
maximized when scores to be subtracted from one another 
are only weakly positively correlated, and if the individual 
scores are reliable in and of themselves (Rodebaugh et al., 
2016). The correlation between performance to incongru-
ent and congruent cues at both time points was moderate to 
high for most variables (r’s 0.61–0.97) except za, which was 
small to moderate (r’s 0.10–0.43; see Table 1).

These strong positive correlations between cue conditions 
not surprisingly lead to uniformly low test–retest reliabilities 
of all difference scores (see Fig. 3). Neither the commonly 
reported threat bias score, (r = 0.06, p = 0.52), nor any of the 

Table 2   Visit × BI General Linear Model of difference score values

BI behaviorally inhibited, RT reaction time, SDRT standard deviation 
of reaction time, Acc accuracy, a boundary separation, v drift rate, 
za start point, Ter non-decision time, Diff difference score
*p < 0.05
**p < 0.01

Parameter F (1, 118) P η2

BI RT threat bias 0.85 0.36 0.01
SDRT Diff 3.50 0.06 0.03
ACC Diff 0.09 0.76 0.00
aDiff 0.24 0.63 0.00
vDiff 0.91 0.34 0.01
zaDiff 1.21 0.27 0.01
TerDiff 1.01 0.32 0.01

Visit RT threat bias 0.02 0.89 0.00
SDRT Diff 0.59 0.44 0.01
ACC Diff 2.67 0.11 0.02
aDiff 1.13 0.29 0.01
vDiff 0.72 0.40 0.01
zaDiff 0.62 0.43 0.01
TerDiff 0.03 0.87 0.00

Visit × BI RT threat bias 0.47 0.50 0.00
SDRT Diff 0.25 0.62 0.00
ACC Diff 0.21 0.65 0.00
aDiff 0.62 0.43 0.01
vDiff 7.01 0.009* 0.06
zaDiff 9.89 0.002* 0.08
TerDiff 0.97 0.33 0.01

Table 3   Pearson correlation 
of ERP values with traditional 
and diffusion model indices of 
performance

RT reaction time, a boundary separation, v drift rate, za start point, Ter non-decision time, Diff difference 
score
*p < 0.05
**p < 0.001

Performance parameter N1 P1 N170 P2 N2

RT 0.135 − 0.046 0.03 0.054 0.042
ACC​ − 0.045 0.023 0.037 − 0.023 − 0.104
ACC difference score − 0.133 0.092 0.052 − 0.238 − 0.110
RT difference score (bias) 0.064 0.069 0.122 0.098 0.133
A − 0.015 0.180* − 0.014 0.075 − 0.082
aDiff 0.097 − 0.020 − 0.090 − 0.004 − 0.072
V − 0.044 − 0.032 0.097 − 0.083 0.097
vDiff  < 0.001 0.154 0.148 − 0.043 − 0.068
Za − 0.017 0.142 − 0.007 0.110 − 0.108
zaDiff 0.107 − 0.216* − 0.211* − 0.018 − 0.032
Ter 0.013 0.037 − 0.043 − 0.026 − 0.071
terDiff − 0.021 − 0.102 0.095 0.021 0.039
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equivalent difference scores formed via the DM parameters 
(r’s − 0.08 to 0.04, all p’s > 0.35) were significantly corre-
lated across task administrations. DM parameters were also 
computed using Maximum Likelihood), and Chi-Square (cs) 
methods (Voss et al., 2013), but this did not alter the pattern 
of results.

Because of the strong positive correlation in performance 
between cue conditions, test–retest reliability was higher 
when examining overall score values collapsed across cue 
type. Metrics of performance with the highest correlation 
coefficients were mean RT (r = 0.73, p < 0.001) and standard 
deviation of RT (r = 0.47, p < 0.001), followed by mean over-
all v (r = 0.39, p < 0.001). Accuracy across administrations 
was generally high (~ 92%); both accuracy and Ter were 
only weakly correlated over task administrations (Accuracy 
r = 0.25, p = 0.01; Ter r = 0.33, p = 0.02).

Test–retest reliability of performance as indexed by mean 
accuracy was moderated by age. Across the sample, accu-
racy increased between the first and second visit, but for 
each year older a participant was, accuracy increase was 
0.12% more between visits, t = 2.44, p = 0.016, 95% CI 

[0.024, 0.226]. No other moderating effect of age, IQ, or 
severity of BI was found for any variable.

Discussion

Attentional bias to threat is a core cognitive construct that 
is believed to contribute to the development and mainte-
nance of behavioral inhibition and anxiety disorders. How-
ever, recent research has been unable to replicate the link 
between behavioral inhibition and threat bias as indexed by 
the RT difference score on the dot-probe task. Difference 
scores typically have low test–retest reliability (Peter et al., 
1993), leading some to question their ability to be used as a 
marker of individual differences in cognition (Enkavi et al., 
2019; Rodebaugh et al., 2016).

Consistent with those concerns, in a large and well-
characterized school-aged sample of children, we found no 
main effects of BI on the difference score for any index of 
performance, using either traditional indices or any diffu-
sion model parameter. Angry faces did not differentially cue 

Mean RT Std RT Mean ACC Bias Score v ter za vDiff terDiff zaDiff
Non DM 0.726 0.467 0.252 0.063
ML 0.387 0.19 -0.063 -0.079 -0.025 0.040
ks 0.257 0.33 0.049 -0.042 0.035 -0.004
cs 0.277 0.100 0.008 -0.017 -0.024 -0.035
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Fig. 3   Test–retest reliability of various performance measures
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attention to a location in space for either group of children. 
There was, however, a significant BI × Visit interaction for 
vDiff; bias was somewhat smaller among children identi-
fied as BI in the second vs. first visit. There was also a BI 
× Visit interaction for zaDiff in which zaDiff increased for 
controls at Visit 2. Recall that bias may occur either from an 
increase in information accumulation (i.e. faster drift rate) 
or through changes in response expectancy (i.e. changes in 
relative start point). Taken at face value, these results would 
suggest somewhat different processes occurring between vis-
its 1 and 2 depending on BI status. In visit 2, information 
accumulation for angry faces normalizes for children with 
BI (vDiff), but controls have a slightly stronger response 
expectancy bias (zaDiff) for angry faces in the second visit.

Reliability is not task-specific but is a function of the sam-
ple and measurement (Ross et al., 2015). Because diffusion 
modelling provides a more accurate and nuanced descrip-
tion of the performance, it was hoped that these parameters, 
including those like Ter and boundary separation that are 
most theoretically related to the cueing effect, might prove 
to be more reliable and possibly more sensitive to differ-
ences in temperament. DM parameters in lexical decision 
and recognition memory tasks have, in fact, demonstrated 
satisfactory test–retest reliabilities (Lerche & Voss, 2017). 
We did not find this to be the case for the current dot-probe 
data. Consistent with existing literature, reliability for the 
standard RT difference score between congruent and incon-
gruent trials was r = 0.03. It did not improve with difference 
scores created from DM parameters, ranging from a low 
of − 0.079 for vDiff to a high of 0.040 for zaDiff. Thus, 
despite the somewhat intriguing interpretation of the Visit 
× BI interaction for vDiff and zaDiff, such interpretation 
should be qualified given the low reliability of those indi-
ces. Stronger reliability coefficients were observed when we 
averaged across cue conditions.

The presence of strong positive correlations in perfor-
mance between conditions inherently reduces the reliability 
of a difference score. To our knowledge, Price et al. (2019) 
provide the only other analysis of test–retest reliability of a 
dot-probe task using DM parameters, albeit in a young adult 
sample. Although they reported a low test–retest reliabil-
ity (ICC = 0.25) of their Ter difference score across three-
time points, they reported a moderate Pearson’s correlation 
(r = 0.63) across the first two. The correlation coefficients of 
Ter and RT for each condition at each of these first two time 
points was not reported, which might have provided some 
explanation for the difference in findings.

Use of diffusion model parameters also did not improve 
the association between performance and temporally sensi-
tive indices of attentional functioning. Neither traditional 
measures of task performance nor the overall mean values 
of the diffusion model parameters regressed significantly 
onto the amplitudes of concurrently recorded ERPs (P1, 

N1, N170, P2, N2), with the exception of zaDiff. The P1 
is believed to be modulated by arousal or selective atten-
tion (Luck et al., 2000), so in an explicit bias task, such a 
correlation might be interpreted as indicating strong expec-
tancy biases are associated with reduced arousal or selective 
attention. However, because the dot-probe task is an indirect 
measure of attentional bias, the interpretational relevance 
of this particular association is not clear and may not be 
meaningful.

It bears mentioning that EEG data collection only 
occurred during the second but not the first administration. 
In addition, due to the requirements of ERP data collec-
tion, slight differences in the duration of stimulus (500 vs 
1000 ms) and the amount of time participants were given to 
make a response (1500 vs. 2000 ms) varied between visits. 
The non-random variance in these administration proce-
dures may have introduced systematic error to our estimates 
and together contributed to the poor reliability coefficients 
reported here.

However, even if it were the case, it is unlikely that such 
modifications could have completely accounted for such low 
test–retest reliability coefficients. We are reassured in the 
overall interpretive accuracy of our results because the reli-
ability of performance collapsed across cue conditions was 
much larger (in the small to moderate range) compared to the 
difference scores (the foremost index of attentional bias to 
threat) which had negligible reliability. If these administra-
tive differences had influenced our reliability coefficients, it 
would have done so across the board.

A better explanation for low reliability in this and other 
studies is likely due to low cue validity. The dot-probe task 
was modelled off cueing tasks that were originally devel-
oped within the cognitive literature to study visuospatial 
attentional control (Huang-Pollock & Nigg, 2003). Cuing 
is not an all-or-nothing process. The ability of a cue to ori-
ent attention is partially dependent upon how relevant it is 
to accomplish the goal of a task (Victeur et al., 2020), as 
well as the cue’s validity (Vossel et al., 2014). Cues that are 
probabilistic and predict target location are more effective 
in orienting attention than cues that are not (Vossel et al., 
2014). However, in most dot-probe tasks, the facial cues 
are non-probabilistic and appear behind the angry face 50% 
of the time. It is also not uncommon for cues in dot-probe 
tasks to be negatively probabilistic—in these designs, neu-
tral–neutral face pairings, or catch trials in which no tar-
get appears at all, are added alongside threat-neutral face 
pairings (in which the target appears behind the angry face 
50% of the time). In these designs, the angry face predicts 
target location on only 25% of trials. These design flaws 
are therefore likely causing inconsistent cueing effects that 
contribute to the low reliability of the difference score. Some 
have argued that attentional bias to threat might best be con-
ceptualized as a dynamic process in which attention may first 
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be directed towards and then away from an angry face during 
any given trial (Rodebaugh et al., 2016). However, even if 
it were the case that attention shifts first to and then away 
from the angry face, whether attention is initially oriented 
to the angry face would still be heavily dependent upon the 
probability of the cue predicting the location of the target.

Given the fragility of the cueing response, ongoing explo-
ration of other paradigms of attentional bias, rather than reli-
ance on the dot-probe, are increasingly appropriate. First, as 
with work by White et al. (2016), we recommend adopting 
tasks in which bias can be directly measured during the deci-
sion process (e.g., is this a threat or not-threat?) as opposed 
to indirectly measured via cueing methods. Several groups 
have used eye-tracking technology to directly measure chil-
dren’s pupil dilation and gaze time toward threatening versus 
neutral stimuli during computerized tasks (Lisk et al., 2019; 
Price et al., 2016). However, the low between subjects vari-
ability that is often the goal when developing and design-
ing experimental measures of cognition may also make 
them unsuitable for individual differences research (Enkavi 
et al., 2019; Hedge et al., 2018). Thus, mobile eye-tracking 
measures in more naturalistic contexts that are not depend-
ent upon robust experimental manipulations may ultimately 
provide a useful approach to understanding attentional bias 
to threat in anxious or behaviorally inhibited children (Fu & 
Pérez-Edgar, 2019).

Conclusion

Over the last 20 years, the dot-probe task has served as the 
gold standard laboratory task for capturing attentional bias 
to threat. However, recent research has called that body of 
work into question due to demonstrated poor reliability. 
The present study aimed to determine if the diffusion model 
could be used to improve the reliability of the measurement 
of attentional bias, as well as its relation with BI and elec-
trophysiological indicators of performance. This was not 
the case. Overall, these results confirm recommendations 
to move away from using the dot-probe task as the sole reli-
able index of attentional bias, even with indices of perfor-
mance that typically provide more accurate summaries of 
performance.
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