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A B S T R A C T   

The prefrontal cortex (PFC) is a key brain area in considering adaptive regulatory behaviors. This includes 
regulatory projections to regions of the limbic system such as the amygdala, where the nature of functional 
connections may confer lower risk for anxiety disorders. The PFC is also associated with behaviors like executive 
functioning. Inhibitory control is a behavior encompassed by executive functioning and is generally viewed 
favorably for adaptive socioemotional development. Yet, some research suggests that high levels of inhibitory 
control may actually be a risk factor for some maladaptive developmental outcomes, like anxiety disorders. In a 
sample of 51 children ranging from 7 to 9 years old, we examined resting state functional connectivity between 
regions of the PFC and the amygdala. We used Subgrouping Group Iterative Multiple Model Estimation (S- 
GIMME) to identify and characterize data-driven subgroups of individuals with similar networks of connectivity 
between these brain regions. Generated subgroups were collapsed into children characterized by the presence or 
absence of recovered connections between the PFC and amygdala. For subsets of children with available data (N 
= 38–44), we then tested whether inhibitory control, as measured by a stop signal task, moderated the relation 
between these subgroups and child-reported anxiety symptoms. We found an inverse relation between stop- 
signal reaction times and reported count of anxiety symptoms when covarying for connectivity group, sug-
gesting that greater inhibitory control was actually related to greater anxiety symptoms, but only when ac-
counting for patterns of PFC-amygdala connectivity. These data suggest that there is a great deal of heterogeneity 
in the nature of functional connections between the PFC and amygdala during this stage of development. The 
findings also provide support for the notion of high levels of inhibitory control as a risk factor for anxiety, but 
trait-level biopsychosocial factors may be important to consider in assessing the nature of risk.   

The prefrontal cortex (PFC) is broadly associated with a wide spec-
trum of regulatory tasks, including executive functioning and emotion 
regulation (Miller and Cohen, 2001). Conventionally, the ability to 
regulate one’s behavior is viewed as a mechanism for adaptive devel-
opment, often understood as a positive relation between emotion 
regulation and positive outcomes such as school success (Graziano et al., 
2007) and lower rates of some psychopathologies (Cole and 
Deater-Deckard, 2009), such that “more is better”. However, recent data 
suggest that it may be possible to have too much of a good thing as 
higher levels of inhibitory control, a sub-domain of executive func-
tioning, may actually exacerbate risk for anxiety disorders (Carlson and 

Wang, 2007; Eggum-Wilkens et al., 2016; Henderson et al., 2015; 
Henderson and Wilson, 2017; Thorell et al., 2004; White et al., 2011). 
While it is difficult to quantify the exact prevalence, it is estimated that 
up to 28.3% of individuals worldwide are affected by anxiety disorders 
(Baxter et al., 2013), with an even larger portion impacted by symptoms 
below clinical threshold. Anxiety disorders also come at a great cost to 
the individual as well as society, as they are linked to a number of 
negative societal and individual outcomes, including diminished pro-
ductivity in the workplace and greater use of healthcare services 
(Hoffman et al., 2008; Wittchen, 2002). Moreover, onset of symptoms 
often occurs in childhood (Beesdo et al., 2009). Thus, it is important to 
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better understand the etiology of anxiety disorders, as well as mecha-
nisms of risk and resilience through development. 

To better characterize the complex association between inhibitory 
control and risk for anxiety, it is critical to better understand the 
neurological processes that contribute to risk for anxiety. Functional 
connections between the PFC and the amygdala, a limbic structure 
associated with the detection of emotionally salient stimuli, are associ-
ated with adaptive socioemotional development. For example, negative 
resting state functional connectivity between these structures is associ-
ated with fewer anxiety symptoms (Gee et al., 2013; Tottenham and 
Gabard-Durnam, 2017). With circuits between the PFC and amygdala 
captured as a marker of trait-level regulation, we asked whether these 
patterns may help explain the idiosyncratic or inconsistent relations 
between executive functioning behaviors and anxiety symptoms seen in 
the literature. As such, we tested whether the interaction between 
inhibitory control performance and resting state connections between 
regions of the amygdala and the PFC related to anxiety symptomology in 
a cross-sectional sample of school-age children. 

1. Executive functioning 

Executive functioning allows an individual to flexibly respond to 
stimuli even in the face of a competing prepotent response, supporting 
goal attainment (Diamond, 2006). Executive functioning is closely tied 
to the functioning of the PFC (Zelazo et al., 2008). The PFC, in turn, has a 
protracted developmental trajectory, not reaching maturity until young 
adulthood (Casey et al., 2005). As such, adult-like proficiency in exec-
utive functioning has a delayed emergence relative to many other do-
mains of development (Welsh et al., 1991). For the purposes of this 
manuscript, we consider EF through the lens of a three-factor model, 
dividing the broad umbrella term into the dissociable components of set 
shifting, working memory/updating, and inhibitory control (Miyake 
et al., 2000). Specifically, inhibitory control refers to the ability to 
withhold a dominant response in favor of a subdominant one even in the 
presence of distractions, set shifting refers to the ability to flexibly toggle 
between rule sets, perspectives, or loci of attention, and working 
memory updating refers to the ability to not only hold information in 
one’s mind, but to update as information changes (Diamond, 2006; 
Miyake et al., 2000). However, these subdomains of executive func-
tioning are not necessarily a unitary construct. High levels of perfor-
mance in one domain (i.e., set shifting) need not confer high levels of 
performance in another (i.e., inhibitory control; Blackwell et al., 2014). 

Positive developmental outcomes typically associated with higher 
levels of executive functioning include increased school readiness 
(Fitzpatrick et al., 2014) and more sophisticated theory of mind (Carlson 
and Moses, 2001) relative to peers. Impaired executive functioning is 
thought to be a transdiagnostic risk factor for a wide variety of clinical 
diagnoses (Snyder et al., 2015; Zelazo, 2020), including Attention 
Deficit Hyperactivity Disorder (ADHD; e.g. Barkley, 1997), Obsessive 
Compulsive Disorder (OCD; e.g. Shin et al., 2014) and bipolar disorder 
(i.e. Bora et al., 2009). Increased levels of attention shifting may operate 
as a protective mechanism against anxiety (Eggum-Wilkens et al., 2016; 
Henderson et al., 2015; Henderson and Wilson, 2017; Toren et al., 2000; 
White et al., 2011). Similar findings have been reported for working 
memory (Basten et al., 2012; Moran, 2016). However, research remains 
mixed on whether inhibitory control acts in the same protective fashion. 

Supporting the traditional hypothesis that “more is better,” some 
work finds an inverse relation between inhibitory control and anxiety 
symptoms in both children (Kooijmans et al., 2000; Lengua, 2003; Wolfe 
and Bell, 2014) and adults (Ansari and Derakshan, 2011; Basten et al., 
2011). However, other research has found that increased inhibitory 
control may act as a risk factor for higher levels of anxiety, particularly 
among children (Carlson and Wang, 2007; Eggum-Wilkens et al., 2016). 
Moreover, a body of work has found that inhibitory control may interact 
with behaviors associated with trait-level regulation such as social fear 
(Brooker et al., 2016), negative emotionality (Rodrigues et al., 2021), or 

behavioral inhibition (Henderson et al., 2015; Henderson and Wilson, 
2017; White et al., 2011) to predict anxiety in development. As such, 
while under control may relate to maladaptive developmental outcomes 
(Ansari and Derakshan, 2011; Basten et al., 2011; Kooijmans et al., 
2000; Lengua, 2003; Wolfe and Bell, 2014), overcontrol may also be 
similarly deleterious (Carlson and Wang, 2007; Eggum-Wilkens et al., 
2016; Henderson et al., 2015; Henderson and Wilson, 2017). Thus, the 
relation between inhibitory control and anxiety symptoms may be 
U-shaped rather than linear. That is, both lower and higher levels of 
inhibitory control may relate to greater anxiety symptoms, and the 
optimal range of inhibitory control may instead be found at more 
moderate levels (Gunther and Pérez-Edgar, 2021; Northoff and Tumati, 
2019). 

A proposed mechanism underlying the possible U-shaped association 
between inhibitory control and anxiety symptoms is that high levels of 
inhibitory control contribute to behavioral rigidity and overcontrol 
(Gunther and Pérez-Edgar, 2021; Henderson et al., 2015; Henderson and 
Wilson, 2017). Overcontrolled tendencies may potentiate maladaptive 
social behaviors, which may in turn promote negative affect, limit 
environmental engagement and learning, and ultimately increase risk 
for psychopathology (Gunther and Pérez-Edgar, 2021; Henderson et al., 
2015; Henderson and Wilson, 2017). More work is needed to charac-
terize and understand these relations and underlying mechanisms. 

2. The PFC, functional connections to the amygdala, and 
emotion regulation 

The amygdala is often considered a “salience detector,” responding 
to stimuli important for adaptive engagement with one’s environment 
(e.g., affective stimuli; Adolphs, 2008). Considering the regulatory role 
of the PFC (Zelazo et al., 2008), neural circuitry between the PFC and the 
amygdala is critical for adaptive socioemotional processes (Ochsner 
et al., 2012). Functional connections between the amygdala and the PFC 
evolve over the course of development and throughout young adulthood 
(Taber-Thomas and Pérez-Edgar, 2015). Indeed, the PFC develops on an 
extremely protracted timeline, not reaching maturity until young 
adulthood (Casey et al., 2005). Meanwhile, the amygdala reaches 
near-maturity in early childhood (Gabard-Durnam et al., 2018; Saygin 
et al., 2015). This temporal order of development suggests that while 
amygdala function is shaped early in life by environmental influences, 
the activity of the amygdala both influences the development of the PFC 
and shapes the nature of functional connections between the amygdala 
and PFC (Tottenham and Gabard-Durnam, 2017). Animal work suggests 
that functional connections from the amygdala to the PFC emerge prior 
to the reciprocal connections, demonstrating this directional cascade in 
development (Bouwmeester et al., 2002a; 2002b; Tottenham and 
Gabard-Durnam, 2017). Thus, the PFC itself, as well as its circuitry to the 
amygdala, are in flux through development and are integral to consider 
in assessing adaptive socioemotional development. 

Resting state connectivity analyses aim to assess functional connec-
tions in the brain, in the absence of a task (Uddin et al., 2010). Resting 
state data provide unique information regarding brain networks and 
circuits, highlighting spontaneous activity in these circuits rather than 
activity elicited by a task (Lv et al., 2018; Uddin et al., 2010). However, 
resting state measures have been relatively under-utilized in this area of 
research. Here, we review findings pertaining to functional connections 
between the amygdala and PFC. We note that the majority of published 
work examining connectivity between the PFC and amygdala is either 
task-elicited rather than examining networks at rest, and/or predomi-
nantly conducted in adult samples. 

Gee et al. (2013) found in a healthy cross-sectional sample of chil-
dren that the functional connectivity between the PFC and the amygdala 
in response to fearful faces flips in magnitude from positive to negative 
around 10 years of age. Corresponding with this finding, there were also 
age-related decreases in amygdala activity in response to fearful faces 
through childhood. These findings suggest that changes in 
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fronto-amygdala connectivity may relate to the downregulation of the 
amygdala in response to fearful stimuli by dampening amygdala reac-
tivity (Gee et al., 2013). Additionally, the magnitude of the connection 
between the amygdala and the medial prefrontal cortex (mPFC) signif-
icantly mediated the association between age and reported separation 
anxiety within the sample. Furthermore, when covarying for age, chil-
dren with negative connectivity were more likely to have lower reported 
anxiety (Gee et al., 2013). Therefore, these age-related changes in 
task-based fronto-amygdala connectivity and negative fronto-amygdala 
connectivity may be critical in adaptive socioemotional development. 

Findings are mixed when identifying patterns of resting state con-
nectivity that characterize anxious individuals. Some work finds no 
significant differences in resting state connectivity between regions of 
the PFC and the amygdala as a function of anxiety (Prater et al., 2013). 
However, Hahn et al. (2011) found that clinically anxious adults may 
have decreased resting state connectivity between the left orbitofrontal 
cortex and the left amygdala compared to healthy controls, suggesting 
that less robust functional connections between these regions may be 
related to greater anxious symptomatology. Similarly, Liu et al. (2015) 
found that adolescents with a generalized anxiety disorder diagnosis 
showed decreased connectivity between the left amygdala and left 
dorsolateral prefrontal cortex (dlPFC) at rest. 

On the other hand, Geiger et al. (2016) reported that socially anxious 
adults showed increased connectivity between the left orbitofrontal 
gyrus and the left amygdala. They also examined the executive control 
network, a network of brain regions including both cortical (e.g. 
fronto-parietal regions, middle temporal gyrus, insula, cingulate gyrus, 
and inferior parietal lobe) and subcortical (e.g. cerebellum) structures 
and associated with goal-oriented behavior. Within the left executive 
control network, the authors found increased connectivity within the 
left middle frontal gyrus and decreased connectivity within the left 
orbitofrontal gyrus. The authors suggest that the high levels of con-
nectivity found in fronto-amygdala circuits paired with low levels of 
connectivity in the executive control network may be capturing an 
imbalance between top-down and bottom-up control as part of the eti-
ology of anxious symptomatology. Taken together, more work is needed 
to more thoroughly characterize patterns of resting state connectivity 
that may confer risk for anxiety, especially in childhood. 

3. Assessing resting state connectivity using GIMME 

Traditional network connectivity approaches (e.g., correlation- 
based), while valuable, are not able to determine directionality be-
tween brain regions of interest (ROIs; Smith et al., 2011). Group Itera-
tive Multiple Model Estimation (GIMME), in contrast, is a statistical 
approach that reliably calculates direction of influence between ROIs on 
both an individual and group level (Gates and Molenaar, 2012; Gates 
et al., 2014; Smith et al., 2011). The ability to consider the directionality 
of connections will help to elucidate any potential upregulatory or 
downregulatory connections from PFC to amygdala. Additionally, while 
traditional resting-state analytic approaches rely on the assumption of 
group homogeneity, GIMME accommodates heterogeneity in connec-
tivity across individuals in the sample (Gates and Molenaar, 2012; Gates 
et al., 2014). Eliminating the assumption of homogeneity may be more 
appropriate in examining functional connectivity during a resting state 
scan, which is less constrained. 

GIMME also takes a person-centered approach in assessing network 
connectivity. In traditional network approaches, which are not person- 
centered, the map of nodes/edges that is derived represents averages 
for the population but may not actually apply to or describe any one 
individual in the sample (Molenaar, 2004; Molenaar and Campbell, 
2009). A person-centered approach, first building a model for each in-
dividual, is a solution to this problem (Gates and Molenaar, 2012). 

Secondarily, GIMME uses both contemporaneous and lagged re-
lations in networking mapping, where traditional correlation ap-
proaches do not consider lagged relations. Considering lagged relations 

establishes Granger causality as well as decreases false positives (Gates 
and Molenaar, 2012). 

Finally, GIMME is an alternative to brain-wide associations, or 
examining associations between brain region correlations and a 
behavioral phenotype, which a recent publication suggests lacks power 
and thus replicability (Marek et al., 2022). By using time series data to 
derive network maps between ROIs on an individual level, that were 
then used to form data-driven subgroups, we are using a metric that may 
very well be orthogonal to traditional rsFC strength, and we believe may 
be more robust especially in light of these recent publications. 

GIMME also has subgrouping functionality (“S-GIMME”), which 
generates subgroups of individuals based on similarities in individual- 
level functional connectivity maps (Gates et al., 2017). This 
data-driven method allows for the identification and characterization of 
neural heterogeneity into categorical subgroups independent of behav-
ioral phenotypes. For example, by applying S-GIMME to resting state 
data from a sample of children with and without ADHD, Gates et al. 
(2014) identified 5 subgroups of children with unique connectivity 
patterns amongst fronto-parietal ROIs. Two of the subgroups were 
composed overwhelmingly of children with an ADHD diagnosis. This 
suggests both heterogeneity amongst children with ADHD, but also a 
distinctiveness in connectivity patterns of children with ADHD versus 
typically developing children. These findings also suggest that using a 
data-driven grouping approach may provide a more nuanced way of 
characterizing populations above and beyond a clinical diagnosis (Gates 
et al., 2014). 

Similarly, McCormick et al. (2019) collected functional magnetic 
resonance imaging (fMRI) data during the Balloon Analogue Risk Task 
(BART; Lejuez et al., 2002) to assess risky decision-making in a sample of 
both children and adults. They found that the subgroups generated by 
S-GIMME using cortical and subcortical ROIs were different from the a 
priori adolescent, young adult, and adult groups. Moreover, data-derived 
and a priori groups were differentiated by distinct patterns of connec-
tions between ROIs during the task (McCormick et al., 2019). These 
papers suggest that S-GIMME may provide additional nuance in un-
derstanding profiles of risk above and beyond categorical variables 
conventionally used to describe a sample (Gates et al., 2014; McCormick 
et al., 2019). Thus, this grouping feature of GIMME will help us identify 
subgroups based on neural patterns, regardless of overt behavior, to test 
as a potential risk or protective factor for anxiety. 

4. Present study 

In the present study we examined if inhibitory control proficiency 
moderated the association between resting state PFC-amygdala con-
nectivity and anxiety symptoms in 7-9-year-old children. Based on the 
reviewed literature, this stage of childhood may be just prior to a 
developmental shift from positive to negative connectivity between PFC 
and amygdala that has been observed around age 10 (Gee et al., 2013). 
The time preceding this developmental shift can be inferred to be 
marked by rapid developmental change, especially as newly-emerging 
executive skills begin to stabilize. Thus, this stage of childhood is 
considered a critical window in which to examine individual differences 
in connectivity, especially as these differences may pertain to anxiety 
(Pérez-Edgar et al., 2020). 

We first characterized patterns of resting state PFC-amygdala con-
nectivity in a sample of children 7–9 years of age using S-GIMME, an 
emerging method of generating data-driven subgroups of connectivity 
patterns (Gates et al., 2017). Due to the relative novelty of this method, 
we first sought to describe these subgroups and examine how these 
connectivity patterns related to both inhibitory control performance and 
child-reported anxiety symptoms. Then, we tested whether inhibitory 
control proficiency, a potential risk factor for anxiety, moderated the 
association between PFC-amygdala connectivity and anxiety symptoms 
in middle childhood. 

Although current work has produced inconsistent findings on the 
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relation between functional connectivity and symptoms of anxiety 
(Geiger et al., 2016; Hahn et al., 2011; Liu et al., 2015; Prater et al., 
2013), we predicted that children with no recovered connections be-
tween regions of the PFC and the amygdala will report greater levels of 
anxiety. Conversely, we posit that children with more dense patterns of 
recovered connections between the PFC and the amygdala will report 
lower levels of anxiety. We also predicted that children with recovered 
connections between regions of the PFC and the amygdala would display 
better performance on our measure of inhibitory control, the stop signal 
task. Finally, we predicted that inhibitory control performance will 
moderate the relation between connectivity group and reported anxiety 
symptoms, where higher levels of inhibitory control will strengthen the 
relation between weak/negative PFC-amygdala connectivity and greater 
anxiety symptoms. In other words, children without recovered resting 
state connections between the PFC and the amygdala, which may confer 
lower levels of regulation, will be more likely to show higher levels of 
reported anxiety if they also show higher levels of inhibitory control. 

5. Methods 

5.1. Participants 

At time of data analysis, 77 children were enrolled in an ongoing 
longitudinal, family-risk study originally designed to examine the neu-
rocognitive determinants of pediatric obesity. The study consisted of six 
separate laboratory visits. Data included in this study were acquired 
across two different visits detailed below. 

Based on the family risk design used in the ongoing study, all chil-
dren were healthy weight at enrollment (BMI-for-age < 85th %), but 
were either “high risk” for obesity if both biological parents had BMIs in 
the overweight (i.e., father >25 kg/m2) or obese (i.e., mother >30 kg/ 
m2) range or “low risk” if both biological parents had BMIs in the healthy 
weight range (<25 kg/m2). Participants were excluded if they had any 
neurodevelopmental disorders, colorblindness, claustrophobia, contra-
indications for fMRI, did not speak English as a first language, if they 
were on any medications/had any medical diagnoses that may impact 
the child’s appetite or food preferences/choices, were not of healthy 
body weight (body mass index for age % < 85), or if their parents did not 
meet the BMI criteria for high or low risk. 

Of the enrolled participants, 65 completed a resting state fMRI scan. 
However, 12 children’s scans could not be used due to errors in file 
writing that prevented the preprocessing pipeline to run to completion, 
and one participant was excluded for a diagnosis of ADHD after initial 
enrollment in the ongoing study. No exclusions were made for excessive 
motion; we set the criteria that a participant would be excluded if over 
50% of volumes exceeded the motion threshold and no participants were 
over this value (M = 0.12, SD = 0.12). The average root mean squared 
head position change for the entire sample was 0.25 (SD = 0.23). The 
final sample included 51 children ranging from 7 to 9 years of age at the 
time of the fMRI (M = 8.13, SD = 0.60), but children were between 7 
and 8 years old at time of recruitment. The modal family income was 
over $100,000 USD. 76.5% of parents who filled out questionnaires had 
a Bachelor’s degree or higher, and 68.6% of their partners had a Bach-
elor’s degree or higher. Full details of the sample are described in 
Table 1. These demographics reflect the surrounding rural college town 
community (U.S. Census Bureau, 2021). All study procedures were 
approved by the Institutional Review Board at the Pennsylvania State 
University. All parents and children completed written consent/assent 
and were compensated for their time. 

5.2. Protocol 

Data included in this study were collected at visits two and six. State 
anxiety measurements were collected on visit two following a laboratory 
meal, while fMRI data and stop signal task were collected on visit six. For 
visit six, children were instructed to fast 3 h prior to arrival, and once 

they arrived, rated their fullness using a child-appropriate visual analog 
scale (VAS; Keller et al., 2006). If children were <25% full according to 
the VAS, they were given a small snack (apple juice and granola bar) so 
that they were in a neutral appetitive state during the fMRI. Before and 
after the scan, children rated their state anxiety using the Children’s 
Anxiety Meter – State (CAMS-S; Ersig et al., 2013). Following the fMRI, 
children completed a delay of gratification task, were offered a small 
snack (grapes, apple juice, cheese crackers), and rated images they saw 
in the scanner prior to completing the stop signal task. 

In preparation for the fMRI, children completed a two-session mock 
scanner protocol at visits four and five. As part of this protocol, children 
were able to explore the mock scanner, enter the bore, play a game on 
the computer screen, and complete movement training games. This 
training protocol has resulted in high success rates (i.e., >90% useable 
functional scans) in prior studies with this age-group (Adise et al., 2018; 
English et al., 2019). 

5.3. Data acquisition 

Imaging data were acquired using a 3-T MRI scanner (MAGNETOM 
Trio with Tim system, Siemens Medical Solutions, Erlangen, Germany). 
High resolution structural images were collected using a T1-weighted 
magnetization-prepared rapid acquisition gradient echo (MPRAGE) 
sequence to acquire 160 slices (1 × 1x1mm voxels). During this scan, 
children watched a video of baby animals to improve scan quality and 
reduce motion. 

Immediately following the anatomical scan, resting state data were 
collected. During the resting state scan, children watched an abstract 
video. While a screen with a fixation cross is perhaps the most common 
protocol for resting state data acquisition, recent work suggests that this 
specific visual stimulus improved task compliance and decreased motion 
artifacts while retaining resting state “task” integrity (Vanderwal et al., 
2015). Resting state functional images were collected using a 

Table 1 
Table describing demographics of the final sample.   

N %  

Sex (female) 30 58.8  
Familial obesity risk status (high risk) 19 37.3  
Race 

White 49 96.1  
Asian 2 3.9  

Ethnicity 
Not Hispanic or Latino 52 100  

Yearly income 
$20,000 - $35,999 2 3.9  
$36,000 - $50,999 5 9.8  
$51,000 - $75,999 12 23.5  
$76,000 - $100,000 11 21.6  
Over $100,000 19 37.3  
Declined to respond 2 3.9  

Primary parent education 
High School or GED 7 13.7  
Associate’s Degree 4 7.8  
Bachelor’s Degree 21 40.2  
Master’s Degree 11 21.6  
Ph.D. 8 15.7  

Parent’s partner’s education 
High School or GED 8 15.7  
Associate’s Degree 1 2.0  
Tech or Vocational School 5 9.8  
Bachelor’s Degree 18 35.3  
Master’s Degree 10 19.6  
J.D. 1 1.9  
M.D. 1 1.9  
Ph.D. 5 9.8  
Other/did not respond 2 3.9   

Mean SD Range 

Age at scan 8.13 years 0.60 7.14–9.26  
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T2*-weighted gradient single-shot blood-oxygen-level-dependent 
(BOLD) echo planar imaging (EPI) sequence to acquire 33 slices (3 ×
3x3mm voxels, TR = 2000 ms, TE = 26.0 ms, flip angle = 90, FoV = 220 
× 220, slice gap = 0 mm). The resting state scan was 6 min long (180 vol, 
TR = 2000 ms). Both the anatomical scan and the resting state were the 
first two scans of a larger protocol that involved assessing children’s 
responses to food images and office supplies. These data will be pub-
lished in a forthcoming submission. 

5.4. Data preprocessing 

fMRIprep. Results included in this manuscript come from pre-
processing performed using fMRIPrep 20.2.1 (Esteban et al., 2018a, 
2018b; Esteban et al., 2018a, 2018b; RRID:SCR_016216), which is based 
on Nipype 1.5.1 (Gorgolewski et al., 2011; RRID:SCR_002502). 

T1-weighted (T1w) images were corrected for intensity non- 
uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), 
distributed with ANTs 2.3.3 (Avants et al., 2008, RRID:SCR_004757), 
and used as T1w-reference throughout the workflow. The T1w-reference 
was then skull-stripped with a Nipype implementation of the ants-
BrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), 
white-matter (WM) and gray-matter (GM) was performed on the 
brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang 
et al., 2001). Volume-based spatial normalization to one standard space 
(MNI152NLin2009cAsym) was performed through nonlinear registra-
tion with antsRegistration (ANTs 2.3.3), using brain-extracted versions 
of both T1w reference and the T1w template. The following template 
was selected for spatial normalization: ICBM 152 Nonlinear Asymmet-
rical template version 2009c (Fonov et al., 2009), RRID:SCR_008796; 
Template Flow ID: MNI152NLin2009cAsym], For BOLD runs collected 
during resting state, the following preprocessing was performed. First, a 
reference volume and its skull-stripped version were generated using a 
custom methodology of fMRIPrep. A deformation field to correct for 
susceptibility distortions was estimated based on fMRIPrep\u2019s 
fieldmap-less approach. The deformation field is that resulting from 
co-registering the BOLD reference to the same-subject T1w-reference 
with its intensity inverted (Huntenburg, 2014; Wang et al., 2017). 
Registration is performed with antsRegistration (ANTs 2.3.3), and the 
process regularized by constraining deformation to be nonzero only 
along the phase-encoding direction and modulated with an average 
fieldmap template (Treiber et al., 2016). Based on the estimated sus-
ceptibility distortion, a corrected EPI (echo-planar imaging) reference 
was calculated for a more accurate co-registration with the anatomical 
reference. The BOLD reference was then co-registered to the T1w 
reference using flirt (FSL 5.0.9, Jenkinson and Smith, 2001) with the 
boundary-based registration (Greve and Fischl, 2009) cost-function. 

Co-registration was configured with nine degrees of freedom to ac-
count for distortions remaining in the BOLD reference. Head-motion 
parameters with respect to the BOLD reference (transformation 
matrices, and six corresponding rotation and translation parameters) are 
estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, 
Jenkinson et al., 2002). BOLD runs were slice-time corrected using 
3dTshift from AFNI 20160207 (Cox and Hyde, 1997, RRID: 
SCR_005927). The BOLD time-series (including slice-timing correction 
when applied) were resampled onto their original, native space by 
applying a single, composite transform to correct for head-motion and 
susceptibility distortions. These resampled BOLD time-series will be 
referred to as preprocessed BOLD in original space, or just preprocessed 
BOLD. The BOLD time-series were resampled into standard space, 
generating a preprocessed BOLD run in MNI152NLin2009cAsym space. 

First, a reference volume and its skull-stripped version were gener-
ated using a custom methodology of fMRIPrep (Esteban et al., 2018a, 
2018b, supplementary note 3). Several confounding time-series were 
calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS and three region-wise global signals. FD was computed 

using two formulations following Power (absolute sum of relative mo-
tions; Power et al., 2014) and Jenkinson (relative root mean square 
displacement between affines; Jenkinson et al., 2002). FD and DVARS 
are calculated for each functional run, both using their implementations 
in Nipype (following the definitions by Power et al., 2014). The three 
global signals are extracted within the CSF, the WM, and the 
whole-brain masks. 

Additionally, a set of physiological regressors were extracted to 
allow for component-based noise correction (CompCor, Behzadi et al., 
2007). Principal components are estimated after high-pass filtering the 
preprocessed BOLD time-series (using a discrete cosine filter with 128s 
cut-off) for the two CompCor variants: temporal (tCompCor) and 
anatomical (aCompCor). tCompCor components are then calculated 
from the top 2% variable voxels within the brain mask. For aCompCor, 
three probabilistic masks (CSF, WM and combined CSF + WM) are 
generated in anatomical space. The implementation differs from that of 
Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD 
space, the aCompCor masks are subtracted a mask of pixels that likely 
contain a volume fraction of GM. This mask is obtained by thresholding 
the corresponding partial volume map at 0.05, and it ensures compo-
nents are not extracted from voxels containing a minimal fraction of GM. 

Finally, these masks are resampled into BOLD space and binarized by 
thresholding at 0.99 (as in the original implementation). Components 
are also calculated separately within the WM and CSF masks. For each 
CompCor decomposition, the k components with the largest singular 
values are retained, such that the retained components\u2019 time se-
ries are sufficient to explain 50 percent of variance across the nuisance 
mask (CSF, WM, combined, or temporal). The remaining components 
are dropped from consideration. 

The head-motion estimates calculated in the correction step were 
also placed within the corresponding confounds file. The confound time 
series derived from head motion estimates and global signals were 
expanded with the inclusion of temporal derivatives and quadratic terms 
for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 
0.5 mm FD or 1.5 standardized DVARS were annotated as motion out-
liers. All resamplings can be performed with a single interpolation step 
by composing all the pertinent transformations (i.e., head-motion 
transform matrices, susceptibility distortion correction when available, 
and co-registrations to anatomical and output spaces). Gridded (volu-
metric) resamplings were performed using antsApplyTransforms 
(ANTs), configured with Lanczos interpolation to minimize the 
smoothing effects of other kernels (Lanczos, 1964). Non-gridded (sur-
face) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham 
et al., 2014, RRID:SCR_001362), mostly within the functional processing 
workflow. More details of the pipeline can be seen the section corre-
sponding to workflows in fMRIPrep documentation. 

XCP Engine. XCP Engine cleans and parses time series data from the 
preprocessed fMRIprep data. In this processing, we selected the 36P +
DESPIKE to clean for motion artifacts (Lydon-Staley et al., 2019). From 
XCP Engine, we derived time series data for each of our ROIs. For our 
analysis we a priori selected bilateral ROIs encompassed by the PFC, 
which was central to our hypothesis: the frontal pole, frontal medial 
cortex, frontal orbital cortex, and the amygdala. ROIs were anatomically 
defined by the Harvard Oxford atlas, used in prior studies of similar age 
range and brain areas of interest (i.e., Liu et al., 2021). 

5.5. Resting state connectivity 

GIMME was used to construct functional connectivity maps during 
resting state fMRI (Gates and Molenaar, 2012; Gates et al., 2014; Smith 
et al., 2011). GIMME operates within a unified structural equation 
model framework (uSEM; Gates et al., 2010; Kim et al., 2007), where a 
data-driven algorithm constructs functional connectivity maps by using 
information from both the individual- and group-level through a process 
of model building and model pruning. First, information is pooled across 
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all participants and used to create a connectivity map that is represen-
tative of the sample using modification indices (Sörbom, 1989). Group 
paths are retained if they improve model fit, according to modification 
indices, at a user-defined cutoff value. Following recommendations from 
Gates et al. (2021), we lowered the default group level threshold from 
the default 75%–51%. This reflects criteria specifying that greater than 
half of individuals must have a path present and improve overall model 
fit for the path to be represented in the group level map. 

Importantly, all autoregressive paths are freely estimated in order to 
determine directionality between ROI paths by establishing Granger 
causality (Granger, 1969; Lane and Gates, 2017). The group map is then 
pruned by eliminating paths which, because of adding paths across it-
erations, no longer improve model fit. Next, individual-level paths are 
estimated. For each individual, the group-level model is fit, and then 
modification indices are used to assess whether additional paths for each 
individual would improve the fit of the model. This iterative procedure 
continues until excellent model fit is obtained. Excellent model fit is 
defined as exceeding two out of four fit indices (Gates and Molenaar, 
2012): root mean squared of approximation (RMSEA) ≤ 0.05; stan-
dardized root mean residual (SRMR) ≤ 0.05; comparative fit index (CFI) 
≥ 0.95; non-normed fit index (NNFI) ≥ 0.95. 

We allowed GIMME to freely construct subgroups based on indi-
vidual connectivity maps. With this approach, the researcher does not 
need to specify the number of subgroups. Rather, the best fit for number 
of subgroups is chosen by the algorithm (Gates et al., 2017; McCormick 
et al., 2019). S-GIMME decides the number of subgroups by creating a 
similarity matrix using the individual estimates of the group-level con-
nections (Gates et al., 2017). Then, the similarity matrix is subjected to 
the Walktrap community detection approach (Pons and Latapy, 2006), 
which arrives at subgroups by utilizing data-driven random walks to 
maximize modularity. Thus, subgroups are based on the characteristics 
of the individual-level connectivity maps. Walktrap approaches have 
been shown to avoid spurious subgroupings and do not rely on signifi-
cance testing which is a common problem in network contexts (Gates 
et al., 2017). After S-GIMME identifies distinct subgroups, unique sub-
group specific paths are identified in a similar way as the group- and 
individual-level paths. We retained the default 50% as the subgroup 
level cutoff, reflecting criteria specifying that half of the individuals 
within a designated subgroup must have a path present for the path to be 
represented on the subgroup level map. In sum, the final solution from 
S-GIMME includes group-, subgroup-, and individual-level paths that are 
all estimated at the individual-level. 

5.6. Inhibitory control 

Inhibitory control was assessed on visit 6, following the fMRI scan. 
Children were offered a small snack (i.e., cheese crackers, grapes, and 
apple juice) between the fMRI and SST so that they were in a neutral 
appetitive state during the task. The stop signal task assesses inhibitory 
control by measuring the latency of response inhibition. The current 
version of the stop signal task used was developed specifically for this 
study to assess individual differences in children’s inhibitory control in 
response to food images that varied by portion size (i.e., large versus 
small) and energy density (i.e., high calorie versus low calorie). How-
ever, in the current analyses, we focused only on children’s overall 
performance (i.e., independent of the food condition they were 
responding to). The stop signal task was administered using Mat-
lab2018b and Psychtoolbox3 (Kleiner et al., 2007). Pictures of plates of 
food were presented with a triangle folded napkin on either the left or 
right side of the plate (go-signal; see Fig. 1) for 1500 ms with an 
inter-stimulus-interval of 50 ms (i.e., fixation). Children were asked to 
sort the plates according to which side of the plate the napkin was on and 
to press the left or right arrow keys when the napkin appeared on the left 
or right side of the plate, respectively. They were encouraged to respond 
as quickly as possible. Children were also told that the plate would be 
sometimes get covered with a silver cloche (i.e., stop-signal; see Fig. 1) 
and were instructed not to respond if the silver cloche appeared. The 
silver cloche (i.e., stop-signal) was presented after variable delay on 
(25% of trials). The variable stop-signal delay (SSD) was determined by 
a step-wise adaptive procedure which increased the SSD 50 ms after 
each successful stop trial and reduced the SSD by 50 ms after each un-
successful stop trial with the first SSD = 250 ms. This adaptive procedure 
maintained ~0.50 probability of successful response inhibition. The task 
parameters were based on specifications articulated by Verbruggen et al. 
(2019) for best practices in measuring stop-signal reaction time ac-
cording to the theoretical racehorse model. 

The task consisted of 256 trials across of 4 randomized blocks (i.e., 
64 trials per block). After the practice, children were reminded to 
respond quickly and told that they may be encouraged to respond 
quickly during the task. To prevent children from slowing throughout 
the task, the message ‘Faster’ was presented after trials in which they 
responded slower than 1.5 standard deviations below their mean reac-
tion time in practice. Between each block, children were given the op-
portunity to take a break and were shown their average response time (e. 
g., ‘How Fast Were You?’), given encouragement for how quickly they 
were responding (e.g., ‘Wow, that is faster than a second’), and were 

Fig. 1. Schematic depicting stop signal task.  
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reminded not to press the arrow keys if the silver cloche covered the 
plate. 

Stop-signal reaction times (SSRT) were computed using the inte-
gration method after replacing omitted go responses with the partici-
pants’ slowest go RT (Verbruggen et al., 2019). SSRT was only computed 
if the assumptions of the racehorse model were met (i.e., mean go RT >
mean unsuccessful stop RT; Verbruggen et al., 2019). Of the 51 children 
who provided resting state data, 44 children provided SSRT data. 
Additionally, 1 participant’s SSRT was excluded for not meeting the 
assumptions of the race model, and was therefore also treated as missing 
data. 

5.7. Anxiety symptoms 

Participants reported on their own anxiety symptoms using the 
Revised Children’s Manifest Anxiety Scale (RCMAS), a 37-item ques-
tionnaire that asks children to endorse whether they do or do not 
experience a behavior (example: “I have trouble making up my mind”). 
Children filled out this questionnaire at their second laboratory visit. 
The RCMAS correlates highly with the trait anxiety subscale of the State- 
Trait Anxiety Inventory for children (STAIC), but not the state subscale, 
demonstrating construct validity with trait anxiety (Reynolds, 1980). 
The RCMAS is a reasonably stable measure of anxiety in school-age 
populations (Reynolds, 1981) and demonstrates good test-retest reli-
ability (Wisniewski et al., 1987). We were interested in trait anxiety in 
contrast to state anxiety; it is the stable, persistent symptom profile that 
is of greater clinical relevance than ordinary intraindividual fluctuations 
in anxiety (Beauchaine, 2015). 

For our analysis we used the total anxiety score of the RCMAS, which 
ranged from 0 to 28. Endorsing 19 or more behaviors (N = 6) indicates 
clinically significant levels of anxiety (Stallard et al., 2001). Forty five of 
the 51 children who provided useable resting state data also provided 
data from the RCMAS. Within our sample, this score had excellent in-
ternal consistency (Cronbach’s Alpha = 0.89). 

Additionally, we collected information on the child’s level of state 
anxiety immediately before the fMRI using the Children’s Anxiety Meter 
– State (CAMS-S; Ersig et al., 2013). For this measure, children are 
presented with a thermometer-like graphic and are asked to mark where 
they feel right now, with the bottom annotated as “Calm, not nervous or 
worried” and the top annotated as “Very very nervous or worried.” The 
child’s mark is then translated into a numeric value, with 0 representing 
lowest levels of state anxiety and 10 representing highest levels of state 
anxiety. Fifty of the 51 children providing resting state data also pro-
vided CAMS data. 

5.8. Data analysis 

All statistical analyses were conducted in R version 3.6.2. S-GIMME 
was used to generate data-driven subgroups characterizing resting state 
connectivity between regions of the PFC and the amygdala. In all ana-
lyses, familial obesity risk status (“high risk” if maternal BMI >30 kg/m2 

and paternal BMI >25 kg/m2), age, and sex were treated as covariates. 
We also entered pre-scan state anxiety as a covariate in these models to 
control for the child’s mental state upon entering the scanner (Ersig 
et al., 2013). 

Using subgroup memberships derived from S-GIMME, we identified 
two connectivity groups of children: one with recovered connections 
between regions of the PFC and the amygdala, and one without these 
recovered connections. Then, we tested connectivity group differences 
in anxiety, as measured by the RCMAS, and in SSRT, as a metric of 
inhibitory control. Finally, we tested whether SSRT moderated the as-
sociation between connectivity group membership and anxiety 
symptoms. 

6. Results 

S-GIMME identified five subgroups in the sample. The number of 
members in each subgroup can be found in Table 2. 

To assess model fit for the final solution, we used recommendations 
published by Gates and Molenaar (2012). The average root mean 
squared error of approximation (RMSEA) was 0.10, the average stan-
dardized root mean–square residual (SRMR) was 0.04, the average 
non-normed fit index (NNFI) was 0.92, and the and the average 
comparative fit index (CFI) was 0.96. Because the SRMR <0.05 and CFI 
>0.95, we deemed the model fit excellent (Gates and Molenaar, 2012; 
Hu and Bentler, 1999). 

Our hypotheses were central to functional connections between re-
gions of the PFC and the amygdala, and we had no hypotheses specific to 
intra-region PFC connectivity or connections between more specific 
regions of the PFC and the amygdala. Therefore, we collapsed across 
subgroups that did (N = 2) and did not (N = 3) recover significant 
connections between regions of the PFC and the amygdala for analysis 
(Fig. 2). Thus, group membership was included in models as a dichot-
omous variable. For these final groups, group 1 (characterized by the 
presence of recovered connections between regions of the PFC and the 
amygdala) included 20 individuals, and group 2 (characterized by the 
absence of recovered connections between regions of the PFC and the 
amygdala) included 31 individuals. There were no significant differ-
ences in age, sex, familial risk for obesity, or head motion between these 
groups (all p > .14). 

Analyses were conducted with all available data, so sample sizes 
varied slightly for each analysis as participants with fMRI data did not 
provide all behavioral data (Table 3). First, we assessed differences in 
anxiety and SSRT in the connectivity groups. Count of anxiety symptoms 
and their distribution, faceted by connectivity group, are plotted in 
Fig. 3. We statistically tested whether connectivity group membership 
was related to anxiety symptoms, while covarying for sex, age, pre-scan 
state anxiety, and obesity risk. In assessing relations to anxiety symp-
toms, we used a negative binomial distribution to account for the count- 
nature of the variable, as well as overdispersion within the sample 
(Cameron and Trivedi, 1990). There were no significant relations be-
tween connectivity group and number of reported anxiety symptoms. 
Results from the model can be seen in Table 3 (see Table 4). 

Next, we tested whether connectivity group membership was related 
to SSRT, while covarying for sex, age, pre-scan state anxiety, and obesity 
risk. SSRT data and distribution, faceted by connectivity group, are 
plotted in Fig. 3. A normal distribution was used in this analysis. There 
was a significant negative association between connectivity group 
membership and SSRT, b(SE) = − 55.54(24.84), p = .03. That is, in-
dividuals characterized by no recovered connections between regions of 
the PFC and the amygdala (group 2) had faster SSRTs than individuals 
characterized by the presence of recovered connections between regions 
of the PFC and the amygdala (group 1). This pattern suggests better 
inhibitory control for members of group 2. Results from the model can 
be seen in Table 3. 

We finally tested whether SSRT moderated the relation between 
connectivity group and anxiety symptoms, also using a negative bino-
mial distribution. We found no significant interaction between SSRT and 
connectivity group, b(SE) = 0.003(0.002), p > .05. However, we did find 
a significant conditional effect of SSRT on anxiety symptoms, b(SE) =

Table 2 
Table displaying number of children in each S-GIMME generated subgroup.  

Subgroup N Final group 

1 13 1 
2 15 2 
3 7 1 
4 6 2 
5 10 2  
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− 0.005(0.002), p = .007. A follow-up analysis found that while co-
varying for group membership, there was a significant effect of SSRT on 
self-reported anxiety symptoms, b = − 0.002, p = .048 (Table 5). That is, 
for a 10 ms increase in SSRT (indicating less proficient inhibitory con-
trol), the expected log count of the number of reported anxiety symp-
toms decreases by 0.03 or 3% (Odds Ratio for 10 ms increase = 0.97). 
The relation between SSRT and anxiety symptoms faceted by connec-
tivity group is visualized in Fig. 4. 

7. Discussion 

In this study, we tested the interaction between inhibitory control 
performance and patterns of resting state PFC-amygdala connectivity in 
relation to anxiety symptoms. To do so, we used a data-driven approach 
to identify subgroups of children with unique patterns of PFC-amygdala 
resting state connectivity. 

S-GIMME freely constructs subgroups without a priori specification 
of number of desired subgroups. Thus, the finding of five subgroups 
within this sample highlights the heterogeneity of patterns of PFC- 

Fig. 2. Subgroups recovered by S-GIMME (N = 5). Only subgroup-level connections are shown; individual-level and group-level connections can be seen in the 
supplement (Fig. S1). Autoregressive effects are not depicted. Subgroups 2 and 4 are characterized by similar subgroup-level connections but are differentiated by 
individual-level connections, these are similarly depicted in the supplement. Solid lines represent contemporaneous effects and dashed lines represent lagged effects. 
Subgroups were collapsed to create two groups: 1) characterized by the recovery of significant connections between regions of the PFC and the amygdala (blue box) 
and 2) characterized by the absence of recovery of significant connections between regions of the PFC and the amygdala (yellow box). (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Negative binomial and linear models assessing relations between connectivity group and self-reported anxiety symptoms via the RCMAS and inhibitory control 
performance indexed by SSRT, respectively. Odds included for model ran using a negative binomial distribution. Sex, age, pre-scan state anxiety, and obesity risk 
category were entered as covariates in all models.  

Parameter Anxiety symptoms (RCMAS) SSRT 

N = 44 N = 42 

Estimate SE Odds ratio z-value Estimate SE t-value 

Intercept 1.44 1.40 4.22 1.02 1026.52*** 166.10 6.18 
Sex − 0.15 0.20 0.86 − 0.77 − 5.72 23.92 − 0.24 
Age 0.09 0.17 1.09 0.57 − 82.69*** 19.59 − 4.22 
Familial obesity risk status 0.23 0.19 1.26 1.20 58.42* 24.73 2.36 
Pre-scan state anxiety 0.07 0.04 1.07 1.56 − 7.12 4.97 − 1.43 
Connectivity group − 0.07 0.20 0.93 − 0.32 − 55.54* 24.84 − 2.24 

+p < .10, *p < .05, **p < .01, ***p < .001 Sex: 0 = female, 1 = male Familial obesity risk status: 0 = low risk, 1 = high risk Connectivity group: 1 = PFC-Amygdala 
connections recovered, 2 = PFC-Amygdala connections not recovered 
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amygdala connectivity in this developmental window, especially in a 
sample unselected for anxiety or anxiety risk. We also note that the 
majority of children within this sample (31 of 51) were assigned to the 
subgroups where significant connections between regions of the PFC and 
the amygdala were not recovered. Middle childhood is a period of sig-
nificant change for both the PFC and its functional connections (Casey 
et al., 2005; Gee et al., 2013; Tottenham and Gabard-Durnam, 2017). 

The heterogeneity noted here may be capturing a period of large 
developmental change, or it may be highlighting heterogeneity in these 
circuits that persists through the lifespan. Future research should 
address this question empirically by conducting similar analyses on 
resting state data in either a cross sectional or longitudinal sample, 
focusing on the years surrounding age 10 where this purported shift in 
directionality of connectivity between the PFC and the amygdala takes 
place (Gee et al., 2013). 

We collapsed across these five subgroups to yield two groups for 
analysis that were more central to our research question. Group one was 
characterized by individuals in the subgroups where S-GIMME recov-
ered connections between regions of the PFC and the amygdala, while 
group two was characterized by individuals without PFC-amygdala 
connections. We tested whether these groups differed on their re-
ported anxiety symptoms or inhibitory control performance. Children 
characterized by no recovered connections between regions of the PFC 
and the amygdala had more proficient inhibitory control than children 
who did show these connections. However, we found no significant as-
sociation between connectivity group membership and child-reported 
anxiety symptoms. Of note, we used self-reported anxiety symptoms 
rather than parent-report, and future research may be strengthened by 
incorporating both child and parent report of anxiety symptoms. While 
future research should attempt replication in a larger sample to see if 
this relation is robust, the current association suggests that children for 
whom S-GIMME recovered connections between regions of the PFC and 
the amygdala may have less proficient inhibitory control, reflected in 
longer SSRTs. Meanwhile, we hypothesized that children with recovered 
connections between regions of the PFC and the amygdala would display 
faster SSRTs. Future work should address this association more directly, 
and in a larger sample, to examine potential mechanistic links between 
PFC-amygdala resting state connectivity and inhibitory control, and why 
these recovered connections may be associated with the longer SSRTs 
seen in this sample. 

Finally, integrating SSRT, anxiety, and connectivity group mem-
bership into the same model, we found that greater SSRTs, reflecting less 
proficient inhibitory control, were related to fewer self-reported anxiety 
symptoms, but only when covarying for connectivity group. This finding 
is consistent with previous work suggesting that high levels of control 
may not always be adaptive for healthy development. Our findings 
regarding the interaction between connectivity and SSRT on anxiety 
were not entirely consistent with our hypothesis. We predicted that 
children not showing recovered connections between the PFC and 
amygdala would display higher levels of concurrent anxiety symptoms 
when they also had proficient inhibitory control. However, we found no 
significant interactions between connectivity group and inhibitory 
control. Rather, the positive association between SSRT and anxiety 
symptoms was present when covarying for connectivity group. While the 
relation between SSRT and anxiety is not moderated by connectivity, 
these findings show that trait-level regulatory mechanisms are 

Fig. 3. Violin plot depicting the mean, range, and distribution of both SSRT and 
self-reported anxiety symptoms, split by connectivity group. 

Table 4 
Negative binomial model assessing the interaction between SSRT and connec-
tivity group on self-reported anxiety symptoms. Sex, age, pre-scan state anxiety, 
and obesity risk category were entered as covariates.  

Parameter Estimate SE Odds ratio z-value 

Intercept 5.89** 2.15 361.41 2.73 
Sex − 0.20 0.20 0.82 − 1.02 
Age − 0.25 0.21 0.78 − 1.20 
Familial obesity risk status 0.31 0.18 1.36 1.50 
Pre-scan state anxiety 0.02 0.04 1.02 0.44 
Connectivity group − 1.24+ 0.72 0.29 − 1.73 
SSRT − 0.005** 0.002 0.995 − 2.67 
Connectivity group x SSRT 0.003 0.002 1.003 1.58 

+p < .10, *p < .05, **p < .01, ***p < .001 Model based on 38 persons Sex: 0 =
female, 1 = male Familial obesity risk status: 0 = low risk, 1 = high risk Con-
nectivity group: 1 = PFC-Amygdala connections recovered, 2 = PFC-Amygdala 
connections not recovered. 

Table 5 
Negative binomial model assessing the effect of SSRT on self-reported anxiety 
symptoms. Sex, age, pre-scan state anxiety, obesity risk category, and connec-
tivity group were entered as covariates.  

Parameter Estimate SE Odds ratio z-value 

Intercept 4.70* 2.10 109.95 2.26 
Sex − 0.19 0.20 0.83 − 0.94 
Age − 0.20 0.21 0.82 − 0.93 
Familial obesity risk status 0.34 0.21 1.40 1.59 
Pre-scan state anxiety 0.04 0.04 1.04 0.81 
Connectivity group − 0.16 0.23 0.85 − 0.71 
SSRT − 0.003* 0.001 0.997 − 1.97 

+p < .10, *p < .05, **p < .01, ***p < .001 Model based on 38 persons Sex: 0 =
female, 1 = male Familial obesity risk status: 0 = low risk, 1 = high risk Con-
nectivity group: 1 = PFC-Amygdala connections recovered, 2 = PFC-Amygdala 
connections not recovered. 
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important to consider when examining the relation between executive 
functioning and anxiety risk. This is in line with the idea that trait-level 
biopsychosocial factors, like temperament, may further explain the links 
between executive functioning and socioemotional processes (Hender-
son et al., 2015; Henderson and Wilson, 2017; White et al., 2011). The 
absence of a significant interaction in our model also suggests that high 
inhibitory control as a risk factor for internalizing behaviors may be a 
phenomenon that indeed holds true for the general population, which 
may have important implications for the framing of how inhibitory 
control is fostered in social and educational settings starting in 
childhood. 

We also note that the absence of a significant interaction could be 
potentially attributed to sampling scheme. Our sample was recruited 
from the community and was not intentionally oversampled for over- or 
under-control. Indeed, the distribution of the SSRT metric for the sample 
was relatively normal (skewness = − .83, kurtosis = 3.13). Because 
children who were extremely over- or under-controlled were not 
strongly represented in this data set, it may have limited our ability to 
detect effects (Northoff and Tumati, 2019). 

A relatively homogenous sample may have also influenced our 
findings. We recognize that this sample was not nationally representa-
tive, as children were majority white and high SES, as well as from 
highly educated families. Additionally, this sample was predominantly 
composed of children who were not clinically anxious. Only 6 of the 52 
children reported clinically-relevant symptom levels. This may be due in 
part to the fact that while anxiety disorders may be diagnosed as young 
as preschool-age (Franz et al., 2013), onset of clinical-level sympto-
mology may also be as late as adolescence or adulthood depending on 
the specific diagnosis (Beesdo et al., 2009). A slightly older sample or 
following children longitudinally may also offer more variability in 
anxiety symptoms. 

We should interpret these findings based on a number of methodo-
logical considerations, including age-related differences in cognitive 
state while an individual is instructed to rest during a resting state scan. 
For example, for a younger child, resting state scans may elicit greater 
levels of cognitive control as they suppress a desire to move or talk 
during the scan. Network properties may reflect this heightened state of 
cognitive control. Inconsistencies in prior work may in part reflect the 
unstructured nature of a resting state scan, and findings should consider 
the fact that the actual “task” of laying still in a scanner may vary sys-
tematically across development (Camacho et al., 2020), as well as 

individuals. Furthermore, we recognize that parcellation is an important 
methodological decision, especially in assessing resting state connec-
tivity (Bryce et al., 2021), and these results are specific to anatomic 
brain regions defined by the Harvard-Oxford atlas. Our decision to use 
the Harvard-Oxford atlas was informed by prior work with similar 
research questions and samples (e.g., Liu et al., 2021), however different 
parcellations have the potential to yield different results than reported 
in this manuscript. 

Additionally, while prior theoretical and empirical work suggests 
that the relation between inhibitory control and symptoms of anxiety 
may be nonlinear, we chose to model a linear relation. Quadratic 
modeling between variables relies on the assumption that individuals 
were not sampled along a normal distribution, with oversampling from 
individuals at the extremes of a bell curve. Because our sampling scheme 
did not consider this, we were not equipped to reliably model quadratic 
relations between variables. Future work should intentionally sample 
from low and high levels of both anxiety and inhibitory control to 
accurately assess quadratic relations between these constructs (Northoff 
and Tumati, 2019). 

In conclusion, this study provides support of the notion that high 
levels of inhibitory control may relate to higher levels of self-reported 
anxiety symptoms as early as middle childhood. However, within this 
sample, these associations were evident when covarying for patterns of 
functional connections between the PFC and the amygdala. Thus, it may 
be important to consider neural circuitry and behavior in characterizing 
risk for anxiety within middle childhood. 
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Fig. 4. Plot depicting negative effect of SSRT on self-reported anxiety symptoms, faceted by connectivity group membership.  
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