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A B S T R A C T   

Temperamental Behavioral Inhibition (BI) is a well-documented risk factor for social anxiety in 
development. However, not all BI children will ultimately demonstrate anxious symptomology. 
Levels of inhibitory control have been proposed as a possible risk or protective factor for these 
children, but research remains mixed on whether higher levels of inhibitory control may increase 
or decrease risk in development. However, the idea of elevated inhibitory control as a risk factor 
for maladaptation is often considered incongruent with prior conceptions of advantages conferred 
by proficient inhibitory control. Here, we review theories pertaining to greater inhibitory control 
as a risk factor for BI children. We also review how individual differences in dopaminergic ac-
tivity may link BI, executive functioning, and anxiety both concurrently and longitudinally, 
explaining these nonlinear relations. By way of these associations, we propose a model examining 
how transactions between these dopamine- modulated domains over time may predict socio-
emotional adaptation or maladaptation, and discuss how spontaneous eye blink rate may allow 
for the developmentally-friendly testing of cognitive and socioemotional associations with 
dopaminergic activity across different forms of experimental design.   

Introduction 

Behavioral inhibition (BI) is a temperamental profile characterized by patterns of reticence to novelty, particularly in social sit-
uations (Kagan, Reznick, & Snidman, 1988; Rubin, Burgess, & Hastings, 2002). Notably, BI is a well-documented individual risk factor 
for social anxiety in childhood and adolescence (Chronis-Tuscano et al., 2009; Clauss & Blackford, 2012; Hirshfeld et al., 1992). 
However, not all children with high BI go on to be highly anxious (Degnan & Fox, 2007). Thus, a body of research has examined 
moderators evident across development that may characterize patterns of multifinality. 

Variation in executive functioning is one empirically supported potential moderator of anxiety trajectories. As such, we examine 
theoretical and empirical work focused on the interactions between BI, executive functions, and adaptive socioemotional develop-
ment. In this review we will discuss ways in which individual variation in dopaminergic activity explains evident relations between BI, 
executive functioning, and anxiety, concurrently and through development. We will link BI, executive functioning, and anxiety with 
other dopaminergic processes, such as reward processing. We will also propose a model detailing transactions between these domains 
over time, and how these transactions between BI and executive functioning may lead to adaptive or maladaptive socioemotional 
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outcomes. Finally, we propose an easily captured and developmentally-appropriate methodology—eye-blink rate—that is well-suited 
to studying these transactions across the life span. 

Variation in executive functioning influences divergences in a number of developmental trajectories, including the emergence of 
anxiety (Ansari & Derakshan, 2011; Basten, Stelzel, & Fiebach, 2011; Carlson & Wang, 2007; Eggum-Wilkens, Reichenberg, Eisenberg, 
& Spinard, 2016; Henderson & Wilson, 2017; Henderson, Pine, & Fox, 2015; Kooijmans, Scheres, & Oosterlaan, 2000; Lengua, 2003; 
Thorell, Bohlin, & Rydell, 2004; Toren et al., 2000; White, McDermott, Degnan, Henderson, & Fox, 2011; Wolfe & Bell, 2014) and is 
typically seen as an adaptive or protective mechanism in many domains (Barkley, 1997; Carlson & Moses, 2001; Fitzpatrick, 
McKinnon, Blair, & Willoughby, 2014). Closely tied to the functioning of the prefrontal cortex (PFC; Zelazo, Carlson, & Kesek, 2008), 
executive functions allow an individual to flexibly respond to stimuli even in the face of a competing prepotent response, supporting 
goal attainment (Diamond, 2006). The PFC experiences a protracted developmental trajectory, not reaching maturity until well into 
adolescence (Casey, Tottenham, Liston, & Durston, 2005). As such, adult-like proficiency in executive functioning comes on-line on a 
“delayed” basis as compared to many other areas of development (Welsh, Pennington, & Groisser, 1991). 

This protracted development also leaves the PFC highly susceptible to environmental influences and experiences that may shape 
functional profiles and patterns of connectivity with other neural regions (Casey et al., 2005; Thompson-Schill, Ramscar, & Chrysikou, 
2009). For the purposes of this review we will consider executive functioning through the lens of a three-factor model, dividing the 
broad umbrella term into the dissociable components of set shifting, working memory/updating, and inhibitory control (Miyake et al., 
2000). Despite lexical overlap, inhibitory control is a distinct construct from BI. Throughout this manuscript the executive function 
construct of interest will be referred to as inhibitory control and the temperamental profile will be referred to as BI. Additionally, we 
note that these subdomains of EF are not necessarily a unitary construct. High levels of performance in one domain (i.e. set shifting) 
may not confer high levels of performance in another (i.e. inhibitory control; Blackwell, Chatham, Wiseheart, & Munakata, 2014). 

Positive developmental outcomes typically associated with higher levels of executive functioning include increased school read-
iness (Fitzpatrick et al., 2014) and more sophisticated theory of mind (Carlson & Moses, 2001) relative to peers. Impaired executive 
functioning is thought to be a transdiagnostic risk factor for a wide variety of clinical diagnoses (Snyder, Miyake, & Hankin, 2015; 
Zelazo, 2020), including Attention Deficit Hyperactivity Disorder (ADHD; i.e. Barkley, 1997), Obsessive Compulsive Disorder (OCD; i. 
e. Shin, Lee, Kim, & Kwon, 2014) and bipolar disorder (i.e. Bora, Yucel, & Pantelis, 2009), non-exhaustively. 

Increased levels of attention shifting, a skill embedded within the broader category of executive functions, operates as a protective 
mechanism against internalizing problems (Eggum-Wilkens et al., 2016; Henderson & Wilson, 2017; Henderson et al., 2015; Toren 
et al., 2000; White et al., 2011). Similar findings have been reported for working memory (Basten, Stelzel, & Fiebach, 2012; Moran, 
2016). However, research remains mixed on whether inhibitory control, although also a domain of executive functioning, specifically 
acts in the same protective fashion. 

While a body of work has found an inverse relation between inhibitory control and internalizing symptomatology (Ansari & 
Derakshan, 2011; Basten et al., 2011; Kooijmans et al., 2000; Lengua, 2003; Wolfe & Bell, 2014), other research has found that 
increased inhibitory control may actually act as a risk factor for higher levels of internalizing behaviors, specifically in BI children at 
temperamental risk for anxiety disorders (Carlson & Wang, 2007; Eggum-Wilkens et al., 2016; Henderson & Wilson, 2017; Henderson 
et al., 2015; Thorell et al., 2004; White et al., 2011). This work suggests that the relation between inhibitory control and internalizing 
symptoms may be an inverted-U shape rather than linear, and that BI temperament may further modulate these relations. That is, for 
children higher in BI, higher levels of inhibitory control may relate to greater internalizing symptoms, and the optimal range of 
inhibitory control for these children may be found at more moderate levels. 

The mechanism supporting the idiosyncratic relation between executive functioning and internalizing problems in the context of 
temperamental risk has yet to be fully elucidated. Here, we suggest that the behavioral hallmarks of BI, variations in executive 
functioning, and anxiety behaviors are conceptually, and potentially mechanistically, linked by patterns of dopaminergic activity. 
Furthermore, we put forth the idea that early behavioral differences in BI children linked to patterns of dopamine signaling bi- 
directionally interact with emerging competencies in executive functioning to influence development in both cognitive and socio-
emotional domains, and either exacerbate or mitigate risk of anxious behaviors and psychopathology (Fig. 1). 

Fig. 1. Conceptual model depicting interactions between BI and inhibitory control on social anxiety, and bidirectional associations between 
dopamine and each of these processes. 
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Non-linear impacts of cognitive control in development 

Henderson et al. (2015) detail in the Dual Processing Perspective the potential for non-linearity in the relation between inhibitory 
control and socioemotional maladaptation, specifically in BI children. This approach is rooted in the notion that BI children will more 
readily implement bottom-up, or stimulus driven, attentional patterns in the face of perceived threat as compared to non-BI peers. An 
example of this bottom-up process can be seen in the attentional biases to threatening stimuli demonstrated by many BI children 
(Pérez-Edgar et al., 2010; Roy et al., 2008). Not only do BI children preferentially attend to aspects of the environment that they label 
as threatening, but they also have a higher propensity to label relatively benign items as threatening (Henderson & Wilson, 2017). 

This lack of specificity in orienting also leads to inefficiency, as the child may over-extend and misallocate cognitive resources to 
stimuli that do not actually signal imminent danger. This indiscriminate focus on threat in turn yields the hypervigilance and reticence 
that in part characterizes the BI temperamental profile. This hypervigilance and reticence may also be part of the etiology of anxiety 
disorders, by potentiating negative affect for the individual which may underlie symptoms of anxiety (Lonigan, Vasey, Phillips, & 
Hazen, 2004). For example, when a BI child enters a room of unfamiliar peers they may label these peers as threats and inappropriately 
enter a vigilant attentional state (Jarcho & Guyer, 2018). They may then exhibit difficulty in comfortably engaging with the other 
children, and instead of playing may freeze or remain on the periphery of the scene thus failing to adaptively engage with their social 
environment (Henderson & Wilson, 2017; Henderson et al., 2015). 

This rapid allocation of attention to threat, an automatic process, can call upon controlled processes, like executive functioning, in 
equal magnitude to help the individual navigate away from a distressing stimulus. The invocation of executive functions, in turn, 
operates as a positive feedback loop. Higher levels of inhibitory control may aid in the maintenance of attention to threat, which will 
elicit the continuation of top-down processes, and so on. The role of top-down processes in maintaining rigid socioemotional responses 
may not be immediately apparent in behavioral data for these children, but are often evident in metrics of neural effort and efficiency 
(Henderson & Wilson, 2017; Henderson et al., 2015) such as electroencephalography (EEG), event-related potentials (ERPs; Hen-
derson et al., 2015; Henderson & Wilson, 2017; Lahat et al., 2014; Lamm et al., 2014), and functional magnetic resonance imaging 
(fMRI; Fu, Taber-Thomas, & Pérez-Edgar, 2017). 

For example, Fu et al. (2017) found no differences between BI and non-BI children, measured by questionnaire, in behavioral 
performance on a dot probe attention bias task. In this task, two adjacent faces were presented for 500 ms. The task then measures 
latency to press a button in response to a probe appearing in the same location as one of the faces. Longer latencies to respond to the 
probe in a location incongruent with an emotional face is often interpreted as a sign of bias to that emotion. However, the same study 
found that despite a lack of significant differences in behavior, children high in BI showed greater activation in the dorsolateral 
prefrontal cortex (dlPFC) during the task as compared to children low in BI. This suggested that children high in BI were recruiting the 
executive attention network more than their non-BI counterparts during the task in order to perform at a comparable level 
behaviorally. 

Examining more specific executive functioning behaviors, attention shifting may impact how readily BI children can orient 
attention elsewhere after attending to a threatening stimulus, thus hypothesizing a negative association between anxiety risk and 
attention shifting (Henderson & Wilson, 2017; Henderson et al., 2015). Based on the Dual Processing Perspective, better attention 
shifting increases the ease by which children can toggle between automatic and controlled processes, helping to better maintain a 
balance between these two attentional states (Henderson & Wilson, 2017; Henderson et al., 2015). The ability to visually and 
attentionally navigate away from a threatening stimulus may mitigate anxiety risk by allowing an individual to continue flexibly 
engaging with their environment rather than perseverating upon something negative (Henderson & Wilson, 2017; Henderson et al., 
2015). 

Greater anxiety has also been associated with decrements in working memory, although different theoretical perspectives offer 
different hypotheses in terms of directionality (Moran, 2016). Some work suggests that increased levels of worry and rumination that is 
associated with higher levels of anxiety may interfere and compete with the level of attention to be allocated to a working memory 
task, thus yielding impairments in behavioral performance (Eysenck, Derakshan, Santos, & Calvo, 2007; Moran, 2016). Other work 
posits that degraded working memory makes an individual more susceptible to distractors in their environment, so an individual with 
lower working memory abilities has a diminished ability to suppress negative/intrusive thoughts. This may yield heightened negative 
affect and thus a heightened anxiety risk (Brewin & Smart, 2005; Lonigan et al., 2004; Moran, 2016) 

However, Henderson et al. (2015) and Henderson and Wilson (2017) suggest that increased levels of inhibitory control, in contrast, 
may increase attention allocation to threat in BI children by supporting behavioral rigidity, making it more difficult for a child to 
switch between automatic and controlled processes, and thus working in opposition to attention shifting. Therefore, inefficiency in 
shifting from a state of automatic processing to a state of controlled processing may in turn contribute to the development of anxious 
symptomatology by potentiating attention biases to threatening stimuli, as well as prolonging hypervigilance and negative affect 
(Henderson & Wilson, 2017; Henderson et al., 2015). After the initial capture of attention by potential threat, it is the balance of 
attention shifting and inhibitory control that may render a child either able to navigate their attention away from the stimulus and 
continue exploring their environment, or leave them fixated upon the stimulus and unable to continue engaging with their social 
world. 

Overall, the Dual Processing Perspective broadly suggests that heightened automatic processing, as sometimes found at high levels 
of BI, can trigger processes associated with executive functioning. However, higher levels of executive functioning, specifically 
inhibitory control, do not universally predict lower levels of anxiety (Henderson & Wilson, 2017; Henderson et al., 2015). This 
argument may be inconsistent with many conventional conceptualizations of executive functioning, as reviewed above. However, a 
body of empirical work supports the notion that more is not always better. Experimentally, Carlson and Wang (2007) found that higher 
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levels of inhibitory control did not universally predict greater competencies in emotion regulation. In a sample of preschool children, 
performance on a battery of both inhibitory control and emotion regulation tasks were significantly correlated, but as an inverted-U 
shape rather than linearly. Medium levels of inhibitory control predicted the highest level of emotion regulation, with both the lowest 
and highest levels of inhibitory control predicting lower emotion regulation ability (Carlson & Wang, 2007). Low levels of emotion 
regulation may be a risk factor for anxiety disorders (Amstadter, 2008; Suveg & Zeman, 2004). 

White et al. (2011) found similar associations between inhibitory control and anxiety symptoms in a sample of 4-year-olds assessed 
for level of BI in the laboratory as toddlers. Amongst children high in BI as toddlers, those with high levels of attention shifting as 
measured by the dimensional change card sort task reported lower anxiety symptoms via questionnaire. Conversely, for children high 
in BI as toddlers, those with high levels of inhibitory control as measured by a Stroop task reported greater anxiety symptoms. The 
authors proposed that the potentiating effects of inhibitory control in BI children could be associated with a lack of adaptability in 
one’s behavior across changing contexts. 

High levels of inhibitory control may contribute to inflexible and rigid behaviors, especially in emotional, social, or threat-related 
situations, and thus increased perseverance on these cues. For example, recent work suggests that rigid patterns of attention across 
tasks (Morales, Taber-Thomas, & Pérez-Edgar, 2017) and contexts (Fu, Nelson, Borge, Buss, & Pérez-Edgar, 2019), is associated with 
greater anxiety risk among BI children, concurrently. The continuation of these biases over time may develop into increased anxiety 
symptomatology for these children. On the other hand increased levels of attention shifting may yield higher levels of behavioral 
flexibility and thus help to ameliorate these temperamental or behavioral predispositions for anxiety (White et al., 2011). The amount 
of time spent attending to a perceived threat and in a hypervigilant state relates to anxious symptomatology (Henderson & Wilson, 
2017). Thus, behaviors that help to break these biases and minimize non-goal directed, non-restful time when there is indeed no threat 
would be the most adaptive. 

Thompson-Schill et al. (2009) also suggest that hypofrontality, or an immature PFC, supports adaptive development. This approach 
suggests that the protracted development of the PFC, and accompanying developmental periods of behavioral and cognitive under- 
control, may contribute to higher rates of learning through childhood. Where lower levels of cognitive control may relate to under-
performance in some domains, such as Stroop tasks, the authors suggest that in the long run lower levels of cognitive control may also 
enable a child to more effectively learn and update rules about their world. Within this framework, overly heightened control may be 
to the detriment of these normative learning processes because it precludes the ability to maximally interact with the environment 
(Thompson-Schill et al., 2009). 

The dual processing and hypofrontality perspectives fit into larger frameworks of development suggesting that the extremes of a 
neural mechanism may not be optimal for adaptive development, and moderate levels may be more favorable (Northoff & Tumati, 
2019). A traditional way of statistically analyzing differences between typical and atypical development centers on group comparisons, 
which limits our approach to linear modeling (Northoff & Tumati, 2019). However, non-linear analyses often reveal that neither low- 
nor high-extremes of biological processes are adaptive for development, and indeed an inverted “U” shape may best describe the 
association between biological mechanisms and optimal functioning (Northoff & Tumati, 2019). 

Within the domain of executive functioning, classic work suggests that “more is good” in predicting favorable development 
(Barkley, 1997; Basten et al., 2012; Carlson & Moses, 2001; Eggum-Wilkens et al., 2016; Fitzpatrick et al., 2014; Henderson et al., 
2015; Henderson & Wilson, 2017; Moran, 2016; Toren et al., 2000; White et al., 2011). However, both the dual processing perspective 
and hypofrontality suggest that while low levels of attention shifting, inhibitory control, and/or working memory may be deleterious, 
high levels of the same behaviors may also be equally detrimental for adaptive functioning. Mixed findings regarding the benefits 
associated with high and low levels of executive functioning may arise from differences in modeling or sampling (Northoff & Tumati, 
2019). For example, assuming linearity rather than testing nonlinear models may yield different results (Northoff & Tumati, 2019). 
Another opportunity for differences in findings to emerge is in sampling scheme. Sampling levels of a behavior either as a binary 
variable or at frequencies along a bell curve may yield different findings than oversampling at extremes, for example (Northoff & 
Tumati, 2019). 

Measuring dopaminergic activity to capture mechanisms of executive functioning 

As reviewed, the relation between socioemotional adaptation and executive functioning is not necessarily straightforward. We 
propose that capturing patterns of dopamine signaling throughout development may better elucidate these relations and their un-
derlying mechanisms. 

Dopaminergic activity as a neural correlate of executive functioning 

Dopamine is a neurotransmitter associated with a wide spectrum of social and nonsocial behaviors, as well as clinical diagnoses 
ranging from Parkinson’s disease to Schizophrenia (Hornykiewicz, 1966). Dopamine receptors can be of five different subtypes (D1, 
D2, D3, D4, and D5) and are expressed widely throughout the brain, contributing to the diversity of associated domains (Ayano, 2016). 

Dopamine and dopaminergic receptors are broadly associated with the planning, goal-direction, memory, and inhibition processes 
that are key features of executive functioning (Ayano, 2016; Diamond, 2006), although the directionality of these associations is mixed 
across studies. Prior work has found positive linear relations between executive functioning and binding to D1 receptors in the striatum 
(Karlsson et al., 2011), D2 and D3 receptors in the anterior cingulate cortex (ACC; Lumme, Aalto, Ilonon, Någren, & Hietala, 2007), and 
D2 receptor binding in the hippocampus (Takahashi et al., 2008). McNab et al. (2009) found an inverse relation between binding 
potential in cortical D1 receptors and working memory performance. Takahashi et al. (2008) found an inverted-U relation between D1 
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receptor binding in the PFC and performance on the Wisconsin Card Sorting task, a common executive functioning assessment. 
However, dopaminergic activity is difficult to measure directly and non-invasively in human models because current common 

neuroimaging techniques do not reliably index neurochemical changes (Badgaiyan, 2014). In humans, eye blink rate is regarded as a 
promising peripheral, non-invasive index of striatal dopamine activity (Jongkees & Colzato, 2016; Karson, 1983; Van Slooten, Jahfari, 
& Theeuwes, 2019), specifically linked to striatal D1 and D2 receptors (Jongkees & Colzato, 2016), which are in turn broadly related to 
both cognitive and emotional control (Ayano, 2016). Early work noted that individuals with Parkinson’s Disease, a neurological 
disorder characterized in part by low levels of dopaminergic activity, have lower rates of spontaneous eye blinks (Hall, 1945), which 
then led to experimental investigations of this association. For example, the administration of dopamine agonists is significantly 
related to increased spontaneous eye blink rate in monkeys (Karson, 1983). In humans, similar pharmacological manipulations yield 
generally comparable findings (Jongkees & Colzato, 2016). Looking to other special populations beyond individuals diagnosed with 
Parkinson’s disease, a number of studies also show that individuals with schizophrenia, characterized in part by high levels of 
dopaminergic activity in the striatum, show increased spontaneous eye blink rates (Jongkees & Colzato, 2016). 

Despite strong correlations between clinical and pharmaceutical manipulations of dopamine binding patterns, the exact mecha-
nism linking dopamine and eye blink rate remains unclear (Bacher & Smotherman, 2003). However, there is evidence that this as-
sociation between eye blink rate and dopaminergic activity persists through the lifespan and is evident as early as infancy (Bacher & 
Smotherman, 2003). In addition, variables influencing rate of eye blink remain relatively constant through development (Bacher & 
Smotherman, 2003). These findings provide support for using eye blink rate as a proxy for dopaminergic activity throughout devel-
opment (Bacher & Smotherman, 2003). 

Prior work shows that spontaneous eye blink rate is associated with executive functions amongst healthy adults (Colzato, van den 
Wildenberg, van Wouwe, Pannebakker, & Hommel, 2009; Zhang et al., 2015). Work by Zhang et al. (2015) suggests a positive relation 
between spontaneous eye blink rate and accuracy on an attention shifting task, as well as an inverse relation between eye blink rate and 
shifting cost on the same task. These findings suggest a positive relation between dopaminergic activity and attention shifting (Zhang 
et al., 2015). Conversely, in the same sample, Zhang et al. (2015) found an inverse relation between spontaneous eye blink rate and 
performance on an updating/working memory task, suggesting that higher levels of dopamine may actually degrade working memory 
ability (Zhang et al., 2015). 

Findings remain less consistent for associations between dopamine and inhibitory control. Zhang et al. (2015) found that higher 
spontaneous eye blink rate was positively related to accuracy on a go/no go task and lower inhibition cost on a Stroop task, suggesting 
a positive relation between dopamine levels and inhibitory control proficiency. But, conversely, Colzato et al. (2009) found evidence of 
an inverse relation between dopamine levels and inhibitory control proficiency, wherein eye blink rate was related to slower reaction 
times on a stop signal task, a marker of less efficient inhibitory control. The varying relations between striatal dopamine levels and 
different sub-behaviors encompassed by executive functions, especially within the same sample (Zhang et al., 2015), suggest that 
dopamine may play a different role in the execution and efficiency of each sub-domain of behaviors and that the relation between 
dopamine and executive functioning may be nonlinear (Colzato et al., 2009; Zhang et al., 2015). 

Nonlinear relations between levels of dopamine binding and behavior 

As described above, there are both non-positive and nonlinear relations between executive functioning and adaptive socioemo-
tional development specifically in BI children. The inverted-U pattern seen in associations between executive functioning and metrics 
like anxiety risk is mirrored in evident relations between dopamine neurotransmission and executive functioning. Based on their 
morphology, D1 receptors are excitatory and D2 receptors are inhibitory (D5 receptors are considered “D1-like” and therefore also 
excitatory, while D3 and D4 receptors are considered “D2-like” and therefore also inhibitory; Ayano, 2016). The binding of dopamine 
molecules to D1 receptors is related to “go” behaviors, while binding to D2 receptors is related to suppression or “no go” behaviors 
(Jongkees & Colzato, 2016). This balance between behaviors suggests an inverted-U trajectory for the adaptiveness of dopamine levels 
in terms of cognitive function, so greater dopamine binding is not universally advantageous (Jongkees & Colzato, 2016). 

For example, high levels of dopamine may simultaneously activate go tendencies and suppress no go tendencies, lowering the 
threshold for initiating behavior (Jongkees & Colzato, 2016). On the other hand, low levels of dopamine will fail to activate go 
tendencies and fail to suppress no go tendencies, so there is a higher threshold for initiating behavior and the individual may appear to 
be more inhibited (Jongkees & Colzato, 2016). While high levels of inhibition may be clearly disadvantageous, rendering an individual 
inflexible and with minimal environmental engagement and learning, completely uninhibited behavior may be just as deleterious as 
the individual may lack the control to focus attention and behavior adequately for goal attainment (Jongkees & Colzato, 2016). 

Dopaminergic activity as a neural correlate of anxious behaviors 

Dopaminergic activity is associated with mood and emotion regulation as well as reward processing (Ayano, 2016), all of which are 
implicated in the etiology of anxiety disorders (Amstadter, 2008; Silk, Davis, McMakin, Dahl, & Forbes, 2012). The amygdala is 
populated with inhibitory D4 dopamine receptors (Ayano, 2016) and is involved in anxiety-like behavior (Zarrindast & Khakpai, 
2015). For anxious individuals, amygdala hyperactivation mirrors mis- and over-classification cues of danger versus safety (Britton, 
Lissek, Grillon, Norcross, & Pine, 2011). Amygdala activity is also modulated by the PFC, another area rich with dopaminergic activity, 
wherein the PFC can downregulate amygdala activity to provide greater specificity in responding to negative and threat-related cues 
(Britton et al., 2011; Pérez de la Mora, Gallegos-Cari, Arizmendi-Garcia, Marcellino, & Fuxe, 2010). Reward processing and rein-
forcement learning are also generally associated with the amygdala, as well as with other midbrain structures including the striatum 
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(Caouette & Guyer, 2014), which are populated with dopamine receptors as well (Ayano, 2016; Caouette & Guyer, 2014). 
Experimentally, patterns of binding to dopamine receptors show an inverse relation with anxiety symptomatology (Cervenka et al., 

2012; Moraga-Amaro, Gonzalez, Pacheco, & Stehberg, 2014). Broadly, dopamine depletion may be associated with anxiety-like be-
haviors, evidenced by work in both rodents and humans (Zarrindast & Khakpai, 2015). In mouse models, low counts of systemic 
dopamine D3 receptors have been associated with increased anxiety-like behaviors (Moraga-Amaro et al., 2014). In human models, 
increased binding potential to D2 receptors in the medial prefrontal cortex (mPFC) and hippocampus as measured with positron 
emission tomography (PET) has been associated with decreases in reported social anxiety symptoms after treatment with cognitive 
behavioral therapy (Cervenka et al., 2012). In addition, specific polymorphisms of genes associated with dopamine signaling, 
including DRD4, MAO-A, and COMT, are associated with both anxious behaviors and clinical diagnoses of anxiety disorders (i.e. 
Pérez-Edgar et al., 2014; Samochowiec et al., 2004; Stein, Fallin, Schork, & Gelernter, 2005), further suggesting a link between 
dopaminergic activity and anxiety risk. 

Differences in reward processing as a hallmark of behavioral inhibition and anxiety 

The BI phenotype includes behaviors that comprise adaptive socioemotional engagement and functioning, such as biased attention 
to threat and social withdrawal (Chronis-Tuscano et al., 2009; Hirshfeld et al., 1992; Kagan et al., 1988; Lonigan et al., 2004). Prior 
work also suggests that BI children may process rewards differently than non-BI children (Guyer et al., 2006, 2012), a set of behaviors 
also associated with dopamine signaling (Cremers, Veer, Spinhoven, Rombouts, & Roelofs, 2015; Guyer et al., 2006, 2012; Richey 
et al., 2014). Differences in reward processing between BI and non-BI children may underlie divergence in the way they interface with 
and learn about their environment (Britton et al., 2011; Mkrtchian, Aylward, Dayan, Rosier, & Robinson, 2017). 

BI and socially phobic adolescents show patterns of hyperactivation in the striatum to increasing incentives in a monetary incentive 
delay task, in the absence of significant differences in behavior. These findings suggest a heightened neural sensitivity to reward 
amongst BI and socially phobic individuals as compared to their control counterparts (Guyer et al., 2006, 2012). However, adolescents 
with a diagnosis of generalized anxiety disorder do not show these patterns (Guyer et al., 2012), suggesting some specificity of this 
hyperactive reward sensitivity to anxiety profiles particularly sensitive to social contexts and thus possibilities of downstream impacts 
on social behavior specifically. 

In examining sensitivity to social rewards amongst socially anxious individuals during a Social Incentive Delay task, individuals 
with social anxiety disorder showed heightened patterns of striatal activity in response to avoiding punishment as compared to gaining 
a reward (Cremers et al., 2015). In another sample, socially anxious adults demonstrated hypoactivation in the nucleus accumbens, 
part of the striatum, in anticipation of social reward, but showed hyperactivation in the nucleus accumbens in anticipation of monetary 
reward (Richey et al., 2014). These differences in neural sensitivity to social and non-social rewards and punishments fundamentally 
change the aspects of the environment that an individual will approach and avoid in their social world as a function of what they find to 
be rewarding. In this case, an individual with social anxiety may find a putative social reward to be less rewarding, and may therefore 
be less likely to approach the person or event (Richey et al., 2014). These interactions in turn shape subsequent learning about social 
stimuli (Mkrtchian et al., 2017). Patterns of learning regarding one’s social world then informs the proficiency with which one ap-
proaches social interactions, and these “successes” or lack thereof may have downstream consequences for social adaptation or 
maladaptation, respectively. 

Reinforcement learning 

Learning is a critical developmental process that dynamically shapes experience-dependent neural connections through the life-
span (Johnson, 2001). Midbrain structures such as the amygdala and striatum are functionally linked to the PFC and are related in 
processes linked with reinforcement learning, such as reward valuation (Britton et al., 2011; Caouette & Guyer, 2014; Costa, Dal 
Monte, Lucas, Murray, & Averbeck, 2016). Furthermore, dopaminergic activity in these regions has been documented as a key role in 
reinforcement learning, supported though a number of multimodal investigations. Experimentally, the administration of a D2/D3 
receptor agonist, which limits bursts of dopaminergic activity, degrades learning during a probabilistic reward task (Santesso et al., 
2009). Looking to peripheral measures of dopaminergic activity, low spontaneous eye blink rate (suggesting lower striatal dopamine 
levels) was associated with a higher rate of learning from negative outcomes specifically during a reinforcement learning task (Slagter, 
Georgopoulou, & Frank, 2015). 

Reinforcement learning pertaining to threatening stimuli is heavily implicated in anxiety disorders in that anxious individuals may 
have disproportionately negative responses to benign stimuli (Britton et al., 2011). In navigating their environment, both anxious 
individuals and BI individuals are identified by patterns of behavioral avoidance of identified threats during reinforcement learning 
paradigms (Mkrtchian et al., 2017). This avoidance of negative consequences is also associated with enhanced error monitoring, which 
is frequently operationalized by a larger negative deflection of the error-related negativity (ERN) event related potential (ERP) 
amplitude, measured by electroencephalography (EEG), after an erroneous task response (Frank, Woroch, & Curan, 2005; Holroyd & 
Coles, 2002; Mkrtchian et al., 2017). The ERN is also related to dopamine activity, such that the negative deflection is related to 
decreases in dopamine levels in the anterior cingulate cortex after an error is made (Frank et al., 2005; Holroyd & Coles, 2002). Tasks 
to elicit neural signatures of error monitoring include the Flanker task, focusing on trials in which an incorrect response was given by 
the participant (Lahat et al., 2014). Prior work has also marked exaggerations in this neural signature as a risk factor for anxiety, 
specifically amongst BI children (Lahat at al., 2014; McDermott et al., 2009). 

A way of mitigating this biased behavior is through experiencing and learning about the consequences of interacting with 
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potentially distressing stimuli, ultimately binding a non-punishing outcome with a benign stimulus. However, for an anxious indi-
vidual operating within a dynamic social world (and outside of a computer task), it is less likely that they will actually approach and 
learn from a stimulus they have initially labeled as threatening (Mkrtchian et al., 2017). This tendency to avoid the uncertain to 
mitigate possible penalty may further exacerbate the avoidant tendencies that are already highly evident in both anxious and BI in-
dividuals (Kagan et al., 1988; Mkrtchian et al., 2017; Rubin et al., 2002). This avoidance may limit experiential learning to the point of 
engendering restrictive, maladaptive behaviors and/or psychopathology (Mkrtchian et al., 2017). 

Exploration versus exploitation 

Exploration can be defined as an individual widely examining their environment for new opportunities that may be highly 
rewarding (Pérez-Edgar, 2018). Exploitation suggests repeating a more narrow set of behaviors for an opportunity that is more certain 
and familiar, but perhaps less rewarding than other available, but less reliable, avenues (Pérez-Edgar, 2018). An individual’s flexible 
responses to environmental demands often relies on a repertoire of behaviors that includes an toggling between exploration and 
exploitation strategies as a function of context, strategically calling upon the top-down control implicated by executive functioning 
(Diamond, 2006; Pérez-Edgar, 2018). 

Interactions with one’s environment provide an opportunity for reinforcement learning. As an individual explores their environ-
ment, they may associate various outcomes, good or bad, with different stimuli. Individual differences in reinforcement learning may 
arise from the stimuli that individuals actually interact with through this learning process, or differences in exploration versus 
exploitation (Britton et al., 2011; Mkrtchian et al., 2017; Pérez-Edgar, 2018). A distinct profile of exploitative over exploratory be-
haviors in navigating one’s environment is another posited characteristic of BI children as well as a risk factor for anxiety disorders 
(Pérez-Edgar, 2018). 

BI children may be less proficient in toggling between exploration and exploitation (Henderson & Wilson, 2017; Henderson et al., 
2015). A BI child may opt for a more exploitative strategy, choosing a familiar set of behaviors to minimize novelty and risk while still 
retaining a high probability of attaining moderate reward (Pérez-Edgar, 2018). This behavior may become highly entrenched and rigid 
for the child, lacking the ability to adapt across contexts (Henderson & Wilson, 2017; Henderson et al., 2015; Pérez-Edgar, 2018; White 
et al., 2011). Especially in generally safe and low-risk environments, this narrowing set of behaviors may in turn prove maladaptive for 
a child navigating their social world, limiting social opportunities and learning, and thus posing increased risk for internalizing dif-
ficulties or anxiety (Humphreys et al., 2015; Pérez-Edgar, 2018). 

Associations between dopamine signaling and exploratory versus exploitative strategies have been noted in human models using 
peripheral measures of dopaminergic activity. For example, Van Slooten et al. (2019) had a sample of adults complete a reinforcement 
learning task while their eye blinks were recorded using a stationary eye tracker. During a learning phase, participants were presented 
with option pairs (high reward probability versus low reward probability) and learned to choose the more rewarding of the two 
options. In a subsequent phase, participants were presented with novel arrangements of these different options and were asked to 
choose which option they wanted based on reward value. The participants’ ability to choose the most rewarding option and avoid the 
least rewarding option was noted across trials. Participants were also categorized as low or high spontaneous eye blink rate. 

The authors (Van Slooten et al., 2019) found no significant group differences during the second phase during which the participants 
freely chose their preferred option. However, individuals with a lower eye blink rate performed better during the learning phase. That 
is, they were more likely to choose the greater value options during this block of the task. Driving these differences in performance 
were the strategies that individuals used during the task. The authors found that participants with a lower eye blink rate were more 

Fig. 2. Conceptual model depicting the influence of behaviors associated with dopaminergic activity in the midbrain and subcortical areas, such as 
reward processing and motivational behaviors, on social development, and the emerging bidirectional interactions of top-down behaviors such as 
executive functioning, associated with dopaminergic activity in the prefrontal cortex. 
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likely to exploit higher value options, while participants with a higher eye blink rate were more likely to explore lower value options. 
While the higher eye blink rate participants were less likely to “correctly” choose the higher value options, their tendency to explore 
the alternate options was considered more flexible and adaptive for exploring the learning environment (Van Slooten et al., 2019). 

Learning is a critical component of development, and is as a driving force in the changes seen in both brain and behavior through 
the lifespan (Johnson, 2001). However, differences in explorational disposition seen between low- and high-risk anxiety individuals 
have the potential to severely restrict what learning experiences an individual may have. If an individual explores their real-life 
environment, they may shape interpersonal skills and social competency to in turn learn that novelty is indeed not so threatening. 
However, without this experience one’s social world may remain daunting and unknown, continuing limited, maladaptive interactions 
with the environment to the point of psychopathology. 

Anxiety risk as an ensemble of midbrain and frontocortical dopaminergic activity 

Dopamine is a widespread and versatile neurotransmitter, influencing many domains of human behavior (Ayano, 2016). Here, we 
have focused primarily on the role of dopamine in executive functions primarily implicating the PFC, as well as in reward processing 
and reinforcement learning, implicating midbrain regions such as the amygdala and striatum. We posit that it is the interaction be-
tween these domains of cognition that, over time, shape the anxious phenotype, specifically amongst BI children (Fig. 2). 

As reviewed, both BI and anxiety are characterized via an array of dopamine-associated behaviors and neural signatures in reward- 
related tasks (Britton et al., 2011; Frank et al., 2005; Holroyd & Coles, 2002; Lahat et al., 2014; McDermott et al., 2009; Mkrtchian 
et al., 2017; Pérez-Edgar, 2018). These behaviors include a broad avoidance of potential losses and a higher propensity to learn from 
threats during reinforcement learning paradigms (Britton et al., 2011; Mkrtchian et al., 2017), as well as patterns of low exploration 
and high exploitation (Pérez-Edgar, 2018). Another common motif in these findings is that these behaviors are all associated with low 
dopamine at binding sites within the midbrain region (Frank et al., 2005; Holroyd & Coles, 2002; Santesso et al., 2009; Slagter et al., 
2015; Van Slooten et al., 2019). We suggest that individual differences in levels of dopamine and dopamine binding in the midbrain 
may restrict the repertoire of goal-directed and reward-driven behaviors that a child may deploy in navigating their environment, from 
early in development, thus constraining experiences which in turn limit experience-dependent social learning processes. 

Also reviewed is the association between dopamine and executive functioning, although the directionality of these associations 
may be less clear. Increased dopamine measured by eye blink rate may be related to increased levels of attention shifting and decreased 
levels of working memory (Zhang et al., 2015), as well as mixed associations between dopamine levels and inhibitory control (Colzato 
et al., 2009; Zhang et al., 2015). This top-down control of behavior is heavily linked to the PFC (Zelazo et al., 2008), another location 
where dopamine receptors are expressed (Ayano, 2016). The goal-directed behavior shaped by executive functioning and the PFC may 
help an individual in implementing and flexibly switching between reward-driven behaviors to help guide their actions toward higher- 
order goals (Henderson & Wilson, 2017; Pérez-Edgar, 2018). These interactions between reward-driven and goal-directed behaviors 
are supported by structural and functional connections between regions of the cortex, like the PFC, and areas of the midbrain related 
with reward processing such as the amygdala and the striatum (Ayano, 2016; Britton et al., 2011). This connectivity allows for top- 
down modulation over more stimulus-driven behaviors (Britton et al., 2011; Henderson & Wilson, 2017; Henderson et al., 2015; 
Pérez de la Mora et al., 2010). 

Reward valuation and cognitive control are each linked to overlapping dopaminergic activity. Executive functioning is instru-
mental in the effective and adaptive implementation of reward-related behavior and learning. Some individuals may be neuro-
chemically predisposed to a more limited set of adaptive reward-related behaviors by way of differences in dopamine release or 
dopamine binding (Pérez-Edgar et al., 2014; Schmidt, Fox, Pérez-Edgar, & Hamer, 2009; Schmidt, Fox, Pérez-Edgar, Hu, & Hamer, 
2001; Slagter et al., 2015; Van Slooten et al., 2019). Furthermore, a neurochemical profile of lower dopamine activity may underlie 
many hallmark behaviors of BI and anxiety such as greater exploitation and lower exploration (Van Slooten et al., 2015), a negativity 
bias in learning (Slagter et al., 2015), differences in error monitoring (Frank et al., 2005; Holroyd & Coles, 2002; Lahat et al., 2014; 
McDermott et al., 2009), as well as correlate with general anxiety symptomology (Cervenka et al., 2012; Moraga-Amaro et al., 2014; 
Zarrindast & Khakpai, 2015). Lower dopamine activity may also contribute to differences in executive functioning for these same 
individuals (Colzato et al., 2009; Schillerstrom, Horton, & Royall, 2005; Zhang et al., 2015). 

Additionally, the protracted development of the PFC renders the development of executive functioning susceptible to early life 
influences and experiences (Casey et al., 2005; Thompson-Schill et al., 2009; Welsh et al., 1991), so early differences in reward 
behavior and reinforcement learning may contribute to later differences in executive functioning processes, like attention shifting and 
inhibitory control, as well as their neural underpinnings (Johnson, 2001). These differences in flexibility may lead to the entrenchment 
of maladaptive social repertoires, limiting experiences and thus putting these children at increasing risk for anxiety through devel-
opment to the point of psychopathology (Henderson & Wilson, 2017; Henderson et al., 2015; Pérez-Edgar, 2018). 

Future directions 

As reviewed, dopaminergic activity plays a mechanistic link in understanding the origin and potentiation of behaviors that may 
contribute to anxious symptomatology through development. Behaviors linked to dopaminergic activity, such as exploration and 
reward processing, strongly influence the way in which a child navigates, and in turn learns about, their social world. These processes, 
especially early in life, have the ability to shape continued interactions in either an adaptive or maladaptive fashion. Future work 
should seek to examine neural and behavioral markers of both reward and executive functioning processes concurrently, intra-
individual change in these markers over time to better understand their emergence, as well as how these processes may interact 
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longitudinally in relation to socioemotional outcomes. 

Naturalistic paradigms assessing social reward and executive functioning 

A shortcoming in the literature assessing cognitive constructs like exploration versus exploitation and accompanying learning tasks 
is that paradigms are often non-social in nature. Tasks are often incentivized by monetary rewards and stimuli in these games are 
frequently non-social, such as geometric shapes (i.e. Gonzalez, Allen, & Coan, 2016; Van Slooten et al., 2019). However, it may be 
critical to emphasize social aspects and contexts of executive functioning when focused on examining how cognition relates to soci-
oemotional development and risk for socioemotional maladaptation. Social stimuli may cue to both positive or negative outcomes, in 
addition to being inherently rewarding or punitive. 

To expand upon the literature on social reward and close this gap, authors such as Britton et al. (2011) have proposed more social 
paradigms to test fear learning, such as morphing emotion (e.g., angry to happy) between two faces to test generalization of a social 
stimulus. To better understand social reward processing, other authors have adapted the commonly-used monetary incentive delay 
task to be social in nature, utilizing positively and negatively emotionally valenced faces rather than monetary values (Cremers et al., 
2015; Richey et al., 2014). However, the practice of measuring these constructs nearly exclusively on a computer screen may limit 
ecological validity. 

Computerized tasks offer excellent experimental control and precision, but may not closely mirror “real world” social scenarios. In 
the “real world,” social stimuli are dynamic and mutually responsive, as well as embedded in a complex world with competing mo-
tivations and goals. However, social stimuli used in psychological computerized tasks are often static and disembodied faces lacking 
social context. Thus, computer tasks impose a barrier to engagement between the stimuli and the participant (Risko, Richardson, & 
Kingstone, 2016). The movement and responsivity of “real life” facial stimuli may be even more critical to consider in the context of BI 
and social anxiety, since both are in part identified by sensitivity to social and affective stimuli (Fu & Pérez-Edgar, 2019). Furthermore, 
computer tasks also minimize human motion. While this helps to minimize noise and motion artifacts in many forms of behavioral and 
physiological data collection, it may also interfere with more naturalistic processes of cognition as processes such as embodied 
cognition are limited if not halted (Ladouce, Donaldson, Dudchenko, & Ietswaart, 2017). 

Indeed, a body of work suggests that findings from ecologically valid paradigms need not closely mirror findings from their more 
lab-controlled counterparts. In the domain of visual attention, for example, Fu et al. (2019) found that in a live social interaction with a 
stranger, BI and non-BI children were differentiated by number of gaze shifts toward a stranger where BI children made fewer 
attentional shifts to a naturalistic social threat than non-BI children. However, when the same children completed the dot probe task on 
a computer using static emotionally valenced faces, biased attention to faces in this task did not differentiate between the BI and non-BI 
groups (Fu et al., 2019). Where visual attention is closely related to executive functioning (Amso & Scerif, 2015), these discrepancies 
speak to the value of implementing ecologically valid paradigms to better understand how cognition may unfold naturalistically and 
furthermore how individual differences in these measures may modulate risk for socioemotional maladaptation. 

Advances in technology have opened many new avenues for ambulatory data collection. While challenges persist in managing 
signal to noise ratio during many naturalistic paradigms, devices such as ambulatory eye trackers and portable EEG equipment have 
gained traction in the developmental literature and beyond (Ladouce et al., 2017). These wearable methods of data collection allow for 
individuals to participate in more true-to-life paradigms designed to target a construct, such as inhibitory control, while measures such 
as visual attention or neural activity are simultaneously collected. These methods may hold the key to understanding how dopami-
nergic activity influences social and cognitive behavior in more naturalistic settings. For example, ambulatory eye tracking can be used 
to measure spontaneous eye blink rate during a naturalistic inhibitory control task akin to how spontaneous eye blink rate may be 
measured with a stationary eye tracker during a computerized inhibitory control task (Jongkees & Colzato, 2016; Van Slooten et al., 
2019). 

Breadth of sampling 

Mixed findings in the literature regarding the relations between executive functioning and socioemotional development may arise 
from differences in sampling and analytic approaches, as reviewed. Future directions should consider recruiting participants that 
represent broader distributions of a behavioral or neural signature and oversampling to include both high and low extremes. This 
approach allows for the testing of non-linear associations between executive functioning and socioemotional development (Northoff & 
Tumati, 2019). A focus on distribuition also implicates utilizing behavioral or neural predictors/profiles as continuous rather than 
categorical variables to allow for the direct examination of the optimal level of a signature for adaptive development and how this 
“sweet spot” may vary as a function of individual differences (Northoff & Tumati, 2019). Additionally, sample sizes should also be 
large enough to allow for adequately-powered analyses using nonlinear models (Northoff & Tumati, 2019). 

This review summarizes current findings in work linking BI, anxiety, and EF. We also discuss how both dopamine and dopamine- 
mediated behaviors, such as reward sensitivity, social exploration, and top-down control, may further explain interrelations between 
these behaviors. Further examining these relations may help elucidate mechanisms underlying potentially idiosyncratic di-
rectionalities between BI, anxiety, and EF found in prior work. To test this model empirically, work should further examine nonlinear 
associations between executive functioning and anxiety in BI children. This work should utilize naturalistic social paradigms and 
ambulatory data collection to capture the complexities of motivation, emotion, executive functioning, and peripheral measures of 
dopamine signaling to examine how these related processes may interact in ecologically valid settings. These assessments should also 
include diverse and broadly sampled populations to both accurately and representatively characterize pathways of risk and resilience 
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for child socioemotional development. 
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